Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,73 +6,167 @@ from PyPDF2 import PdfReader
|
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain.callbacks.manager import CallbackManager
|
8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
9 |
-
|
10 |
from langchain.vectorstores import Qdrant
|
11 |
from qdrant_client.http import models
|
|
|
12 |
from ctransformers import AutoModelForCausalLM
|
13 |
|
14 |
-
|
|
|
|
|
15 |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
|
16 |
-
print("Embedding model loaded...")
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def get_chunks(text):
|
35 |
text_splitter = RecursiveCharacterTextSplitter(
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
39 |
)
|
|
|
40 |
chunks = text_splitter.split_text(text)
|
41 |
return chunks
|
42 |
|
43 |
-
all_chunks = []
|
44 |
-
|
45 |
-
for file in files:
|
46 |
-
pdf_path = file
|
47 |
-
reader = PdfReader(pdf_path)
|
48 |
-
text = ""
|
49 |
-
num_of_pages = len(reader.pages)
|
50 |
-
|
51 |
-
for page in range(num_of_pages):
|
52 |
-
current_page = reader.pages[page]
|
53 |
-
text += current_page.extract_text()
|
54 |
-
|
55 |
-
chunks = get_chunks(text)
|
56 |
-
all_chunks.extend(chunks)
|
57 |
-
|
58 |
-
print(f"Total chunks: {len(all_chunks)}")
|
59 |
-
print("Chunks are ready...")
|
60 |
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
client.recreate_collection(
|
65 |
collection_name="my_facts",
|
66 |
vectors_config=models.VectorParams(
|
67 |
-
size=encoder.get_sentence_embedding_dimension(),
|
68 |
distance=models.Distance.COSINE,
|
69 |
),
|
70 |
)
|
71 |
|
72 |
-
|
|
|
|
|
|
|
73 |
|
74 |
-
li =
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
client.upload_records(
|
78 |
collection_name="my_facts",
|
@@ -80,12 +174,14 @@ def chat(files, question):
|
|
80 |
models.Record(
|
81 |
id=idx,
|
82 |
vector=encoder.encode(dic[idx]).tolist(),
|
83 |
-
payload={
|
84 |
) for idx in dic.keys()
|
85 |
],
|
86 |
)
|
87 |
|
88 |
-
|
|
|
|
|
89 |
|
90 |
hits = client.search(
|
91 |
collection_name="my_facts",
|
@@ -94,15 +190,17 @@ def chat(files, question):
|
|
94 |
)
|
95 |
context = []
|
96 |
for hit in hits:
|
97 |
-
|
98 |
|
99 |
-
context =
|
100 |
|
101 |
-
system_prompt = """You are a helpful
|
102 |
-
Read the given context before answering questions and think step by step. If you
|
103 |
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
|
104 |
|
|
|
105 |
B_INST, E_INST = "[INST]", "[/INST]"
|
|
|
106 |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
107 |
|
108 |
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
|
@@ -112,17 +210,19 @@ def chat(files, question):
|
|
112 |
User: {question}"""
|
113 |
|
114 |
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
|
115 |
-
|
116 |
result = llm(prompt_template)
|
117 |
-
return result
|
|
|
118 |
|
119 |
screen = gr.Interface(
|
120 |
-
fn=chat,
|
121 |
-
inputs=[
|
122 |
-
outputs=gr.Textbox(lines=10, placeholder="Your answer will be here soon π"),
|
123 |
-
title="Q&A with
|
124 |
-
|
125 |
theme="soft",
|
|
|
126 |
)
|
127 |
|
128 |
-
screen.launch()
|
|
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain.callbacks.manager import CallbackManager
|
8 |
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
9 |
+
# from langchain.llms import LlamaCpp
|
10 |
from langchain.vectorstores import Qdrant
|
11 |
from qdrant_client.http import models
|
12 |
+
# from langchain.llms import CTransformers
|
13 |
from ctransformers import AutoModelForCausalLM
|
14 |
|
15 |
+
|
16 |
+
# loading the embedding model -
|
17 |
+
|
18 |
encoder = SentenceTransformer('jinaai/jina-embedding-b-en-v1')
|
|
|
19 |
|
20 |
+
print("embedding model loaded.............................")
|
21 |
+
print("####################################################")
|
22 |
+
|
23 |
+
# loading the LLM
|
24 |
+
|
25 |
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
|
26 |
|
27 |
+
print("loading the LLM......................................")
|
28 |
+
|
29 |
+
# llm = LlamaCpp(
|
30 |
+
# model_path="TheBloke/Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q8_0.gguf",
|
31 |
+
# n_ctx=2048,
|
32 |
+
# f16_kv=True, # MUST set to True, otherwise you will run into problem after a couple of calls
|
33 |
+
# callback_manager=callback_manager,
|
34 |
+
# verbose=True,
|
35 |
+
# )
|
36 |
+
|
37 |
+
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Llama-2-7B-Chat-GGUF",
|
38 |
+
model_file="llama-2-7b-chat.Q3_K_S.gguf",
|
39 |
+
model_type="llama",
|
40 |
+
temperature = 0.2,
|
41 |
+
repetition_penalty = 1.5,
|
42 |
+
max_new_tokens = 300,
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
print("LLM loaded........................................")
|
48 |
+
print("################################################################")
|
49 |
+
|
50 |
+
# def get_chunks(text):
|
51 |
+
# text_splitter = RecursiveCharacterTextSplitter(
|
52 |
+
# # seperator = "\n",
|
53 |
+
# chunk_size = 250,
|
54 |
+
# chunk_overlap = 50,
|
55 |
+
# length_function = len,
|
56 |
+
# )
|
57 |
+
|
58 |
+
# chunks = text_splitter.split_text(text)
|
59 |
+
# return chunks
|
60 |
+
|
61 |
+
|
62 |
+
# pdf_path = './100 Weird Facts About the Human Body.pdf'
|
63 |
+
|
64 |
+
|
65 |
+
# reader = PdfReader(pdf_path)
|
66 |
+
# text = ""
|
67 |
+
# num_of_pages = len(reader.pages)
|
68 |
+
|
69 |
+
# for page in range(num_of_pages):
|
70 |
+
# current_page = reader.pages[page]
|
71 |
+
# text += current_page.extract_text()
|
72 |
+
|
73 |
+
|
74 |
+
# chunks = get_chunks(text)
|
75 |
+
# print(chunks)
|
76 |
+
# print("Chunks are ready.....................................")
|
77 |
+
# print("######################################################")
|
78 |
+
|
79 |
+
# client = QdrantClient(path = "./db")
|
80 |
+
# print("db created................................................")
|
81 |
+
# print("#####################################################################")
|
82 |
|
83 |
+
# client.recreate_collection(
|
84 |
+
# collection_name="my_facts",
|
85 |
+
# vectors_config=models.VectorParams(
|
86 |
+
# size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
|
87 |
+
# distance=models.Distance.COSINE,
|
88 |
+
# ),
|
89 |
+
# )
|
90 |
|
91 |
+
# print("Collection created........................................")
|
92 |
+
# print("#########################################################")
|
93 |
|
94 |
+
|
95 |
+
|
96 |
+
# li = []
|
97 |
+
# for i in range(len(chunks)):
|
98 |
+
# li.append(i)
|
99 |
+
|
100 |
+
# dic = zip(li, chunks)
|
101 |
+
# dic= dict(dic)
|
102 |
+
|
103 |
+
# client.upload_records(
|
104 |
+
# collection_name="my_facts",
|
105 |
+
# records=[
|
106 |
+
# models.Record(
|
107 |
+
# id=idx,
|
108 |
+
# vector=encoder.encode(dic[idx]).tolist(),
|
109 |
+
# payload= {dic[idx][:5] : dic[idx]}
|
110 |
+
# ) for idx in dic.keys()
|
111 |
+
# ],
|
112 |
+
# )
|
113 |
+
|
114 |
+
# print("Records uploaded........................................")
|
115 |
+
# print("###########################################################")
|
116 |
+
|
117 |
+
def chat(file, question):
|
118 |
def get_chunks(text):
|
119 |
text_splitter = RecursiveCharacterTextSplitter(
|
120 |
+
# seperator = "\n",
|
121 |
+
chunk_size = 250,
|
122 |
+
chunk_overlap = 50,
|
123 |
+
length_function = len,
|
124 |
)
|
125 |
+
|
126 |
chunks = text_splitter.split_text(text)
|
127 |
return chunks
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
pdf_path = file
|
131 |
+
|
132 |
+
|
133 |
+
reader = PdfReader(pdf_path)
|
134 |
+
text = ""
|
135 |
+
num_of_pages = len(reader.pages)
|
136 |
+
|
137 |
+
for page in range(num_of_pages):
|
138 |
+
current_page = reader.pages[page]
|
139 |
+
text += current_page.extract_text()
|
140 |
+
|
141 |
+
|
142 |
+
chunks = get_chunks(text)
|
143 |
+
# print(chunks)
|
144 |
+
# print("Chunks are ready.....................................")
|
145 |
+
# print("######################################################")
|
146 |
+
|
147 |
+
client = QdrantClient(path = "./db")
|
148 |
+
# print("db created................................................")
|
149 |
+
# print("#####################################################################")
|
150 |
|
151 |
client.recreate_collection(
|
152 |
collection_name="my_facts",
|
153 |
vectors_config=models.VectorParams(
|
154 |
+
size=encoder.get_sentence_embedding_dimension(), # Vector size is defined by used model
|
155 |
distance=models.Distance.COSINE,
|
156 |
),
|
157 |
)
|
158 |
|
159 |
+
# print("Collection created........................................")
|
160 |
+
# print("#########################################################")
|
161 |
+
|
162 |
+
|
163 |
|
164 |
+
li = []
|
165 |
+
for i in range(len(chunks)):
|
166 |
+
li.append(i)
|
167 |
+
|
168 |
+
dic = zip(li, chunks)
|
169 |
+
dic= dict(dic)
|
170 |
|
171 |
client.upload_records(
|
172 |
collection_name="my_facts",
|
|
|
174 |
models.Record(
|
175 |
id=idx,
|
176 |
vector=encoder.encode(dic[idx]).tolist(),
|
177 |
+
payload= {dic[idx][:5] : dic[idx]}
|
178 |
) for idx in dic.keys()
|
179 |
],
|
180 |
)
|
181 |
|
182 |
+
# print("Records uploaded........................................")
|
183 |
+
# print("###########################################################")
|
184 |
+
|
185 |
|
186 |
hits = client.search(
|
187 |
collection_name="my_facts",
|
|
|
190 |
)
|
191 |
context = []
|
192 |
for hit in hits:
|
193 |
+
context.append(list(hit.payload.values())[0])
|
194 |
|
195 |
+
context = context[0] + context[1] + context[2]
|
196 |
|
197 |
+
system_prompt = """You are a helpful assistant, you will use the provided context to answer user questions.
|
198 |
+
Read the given context before answering questions and think step by step. If you can not answer a user question based on
|
199 |
the provided context, inform the user. Do not use any other information for answering user. Provide a detailed answer to the question."""
|
200 |
|
201 |
+
|
202 |
B_INST, E_INST = "[INST]", "[/INST]"
|
203 |
+
|
204 |
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
|
205 |
|
206 |
SYSTEM_PROMPT = B_SYS + system_prompt + E_SYS
|
|
|
210 |
User: {question}"""
|
211 |
|
212 |
prompt_template = B_INST + SYSTEM_PROMPT + instruction + E_INST
|
213 |
+
|
214 |
result = llm(prompt_template)
|
215 |
+
return result
|
216 |
+
|
217 |
|
218 |
screen = gr.Interface(
|
219 |
+
fn = chat,
|
220 |
+
inputs = [PDF(label="Upload a PDF", interactive=True), gr.Textbox(lines = 10, placeholder = "Enter your question here π")],
|
221 |
+
outputs = gr.Textbox(lines = 10, placeholder = "Your answer will be here soon π"),
|
222 |
+
title="Q&A with PDF π©π»βπ»πβπ»π‘",
|
223 |
+
description="This app facilitates a conversation with PDFs available on https://www.delo.si/assets/media/other/20110728/100%20Weird%20Facts%20About%20the%20Human%20Body.pdfπ‘",
|
224 |
theme="soft",
|
225 |
+
# examples=["Hello", "what is the speed of human nerve impulses?"],
|
226 |
)
|
227 |
|
228 |
+
screen.launch()
|