Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
from functools import lru_cache
|
| 4 |
|
| 5 |
# Cache model loading to optimize performance
|
| 6 |
@lru_cache(maxsize=3)
|
| 7 |
def load_hf_model(model_name):
|
|
|
|
| 8 |
return gr.load(
|
| 9 |
name=f"deepseek-ai/{model_name}",
|
| 10 |
-
src="huggingface",
|
| 11 |
api_name="/chat"
|
| 12 |
)
|
| 13 |
|
|
@@ -20,13 +20,11 @@ MODELS = {
|
|
| 20 |
|
| 21 |
# --- Chatbot function ---
|
| 22 |
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p):
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# Select the model
|
| 28 |
model_component = MODELS[model_choice]
|
| 29 |
-
|
| 30 |
# Create payload for the model
|
| 31 |
payload = {
|
| 32 |
"messages": [{"role": "user", "content": input_text}],
|
|
@@ -35,22 +33,19 @@ def chatbot(input_text, history, model_choice, system_message, max_new_tokens, t
|
|
| 35 |
"temperature": temperature,
|
| 36 |
"top_p": top_p
|
| 37 |
}
|
| 38 |
-
|
| 39 |
# Run inference using the selected model
|
| 40 |
try:
|
| 41 |
-
response = model_component(payload)
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
| 43 |
except Exception as e:
|
| 44 |
assistant_response = f"Error: {str(e)}"
|
| 45 |
-
|
| 46 |
-
# Append user and assistant messages in the new format
|
| 47 |
history.append({"role": "user", "content": input_text})
|
| 48 |
history.append({"role": "assistant", "content": assistant_response})
|
| 49 |
-
|
| 50 |
-
# Return the updated conversation to display and store
|
| 51 |
-
# 1) chatbot_output = updated history of messages
|
| 52 |
-
# 2) chat_history = same updated history (as state)
|
| 53 |
-
# 3) "" to clear the input textbox
|
| 54 |
return history, history, ""
|
| 55 |
|
| 56 |
# --- Gradio Interface ---
|
|
@@ -66,8 +61,7 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Chatbot") as demo:
|
|
| 66 |
|
| 67 |
with gr.Row():
|
| 68 |
with gr.Column():
|
| 69 |
-
|
| 70 |
-
chatbot_output = gr.Chatbot(label="DeepSeek Chatbot", height=500, type="messages")
|
| 71 |
msg = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
| 72 |
with gr.Row():
|
| 73 |
submit_btn = gr.Button("Submit", variant="primary")
|
|
@@ -110,10 +104,5 @@ with gr.Blocks(theme=gr.themes.Soft(), title="DeepSeek Chatbot") as demo:
|
|
| 110 |
[chatbot_output, chat_history, msg]
|
| 111 |
)
|
| 112 |
|
| 113 |
-
# (Optional) Remove or modify references to spaces.GPU() if you do not need GPU management
|
| 114 |
if __name__ == "__main__":
|
| 115 |
-
# Just launch regularly if you don't need spaces.GPU() for hardware acceleration
|
| 116 |
demo.launch()
|
| 117 |
-
|
| 118 |
-
# If you require GPU on Hugging Face Spaces, you can wrap demo.launch like so instead:
|
| 119 |
-
# spaces.GPU()(demo.launch)()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from functools import lru_cache
|
| 3 |
|
| 4 |
# Cache model loading to optimize performance
|
| 5 |
@lru_cache(maxsize=3)
|
| 6 |
def load_hf_model(model_name):
|
| 7 |
+
# Use the Gradio-built huggingface loader instead of transformers_gradio
|
| 8 |
return gr.load(
|
| 9 |
name=f"deepseek-ai/{model_name}",
|
| 10 |
+
src="huggingface", # Changed from transformers_gradio.registry
|
| 11 |
api_name="/chat"
|
| 12 |
)
|
| 13 |
|
|
|
|
| 20 |
|
| 21 |
# --- Chatbot function ---
|
| 22 |
def chatbot(input_text, history, model_choice, system_message, max_new_tokens, temperature, top_p):
|
| 23 |
+
history = history or []
|
| 24 |
+
|
| 25 |
+
# Get the selected model component
|
|
|
|
|
|
|
| 26 |
model_component = MODELS[model_choice]
|
| 27 |
+
|
| 28 |
# Create payload for the model
|
| 29 |
payload = {
|
| 30 |
"messages": [{"role": "user", "content": input_text}],
|
|
|
|
| 33 |
"temperature": temperature,
|
| 34 |
"top_p": top_p
|
| 35 |
}
|
| 36 |
+
|
| 37 |
# Run inference using the selected model
|
| 38 |
try:
|
| 39 |
+
response = model_component(payload) # The response is likely a dictionary
|
| 40 |
+
if isinstance(response, dict) and "choices" in response:
|
| 41 |
+
assistant_response = response["choices"][0]["message"]["content"]
|
| 42 |
+
else:
|
| 43 |
+
assistant_response = "Unexpected model response format."
|
| 44 |
except Exception as e:
|
| 45 |
assistant_response = f"Error: {str(e)}"
|
| 46 |
+
|
|
|
|
| 47 |
history.append({"role": "user", "content": input_text})
|
| 48 |
history.append({"role": "assistant", "content": assistant_response})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
return history, history, ""
|
| 50 |
|
| 51 |
# --- Gradio Interface ---
|
|
|
|
| 61 |
|
| 62 |
with gr.Row():
|
| 63 |
with gr.Column():
|
| 64 |
+
chatbot_output = gr.Chatbot(label="DeepSeek Chatbot", height=500, type='messages')
|
|
|
|
| 65 |
msg = gr.Textbox(label="Your Message", placeholder="Type your message here...")
|
| 66 |
with gr.Row():
|
| 67 |
submit_btn = gr.Button("Submit", variant="primary")
|
|
|
|
| 104 |
[chatbot_output, chat_history, msg]
|
| 105 |
)
|
| 106 |
|
|
|
|
| 107 |
if __name__ == "__main__":
|
|
|
|
| 108 |
demo.launch()
|
|
|
|
|
|
|
|
|