Spaces:
Sleeping
Sleeping
File size: 13,503 Bytes
998e8ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Image task notebook template\n",
"## Loading the necessary libraries"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"from fastapi import APIRouter\n",
"from datetime import datetime\n",
"from datasets import load_dataset\n",
"from sklearn.metrics import accuracy_score, precision_score, recall_score\n",
"\n",
"import random\n",
"\n",
"import sys\n",
"sys.path.append('../')\n",
"\n",
"from tasks.utils.evaluation import ImageEvaluationRequest\n",
"from tasks.utils.emissions import tracker, clean_emissions_data, get_space_info\n",
"from tasks.image import parse_boxes,compute_iou,compute_max_iou"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading the datasets and splitting them"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4f62b23ca587477d9f37430e687bf951",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"README.md: 0%| | 0.00/7.72k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"c:\\Users\\theo.alvesdacosta\\AppData\\Local\\anaconda3\\Lib\\site-packages\\huggingface_hub\\file_download.py:139: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\theo.alvesdacosta\\.cache\\huggingface\\hub\\datasets--pyronear--pyro-sdis. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
"To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
" warnings.warn(message)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "70735dd748e343119b5a7cd966dcd0f0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00000-of-00007.parquet: 0%| | 0.00/433M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "903c3227c24649f1a0424e039d74d303",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00001-of-00007.parquet: 0%| | 0.00/434M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8795b7696f124715b9d52287d5cd4ee0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00002-of-00007.parquet: 0%| | 0.00/432M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4b6c1240bf024d61bf913584d13834f5",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00003-of-00007.parquet: 0%| | 0.00/428M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "cd5f8172a31f4fd79d489db96ede9c21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00004-of-00007.parquet: 0%| | 0.00/431M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "416af82dba3a4ab7ad13190703c90757",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00005-of-00007.parquet: 0%| | 0.00/429M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6819ad85508641a1a64bea34303446ac",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"train-00006-of-00007.parquet: 0%| | 0.00/431M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90a7f85c802b4330b502c8bbd3cca7f9",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"val-00000-of-00001.parquet: 0%| | 0.00/407M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b93f2f19aafb43e2b8db0fd7bb3ebd34",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating train split: 0%| | 0/29537 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c14c0f2cde184c959970dfccaa26b2d2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Generating val split: 0%| | 0/4099 [00:00<?, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"request = ImageEvaluationRequest()\n",
"\n",
"# Load and prepare the dataset\n",
"dataset = load_dataset(request.dataset_name)\n",
"\n",
"# Split dataset\n",
"train_test = dataset[\"train\"].train_test_split(test_size=request.test_size, seed=request.test_seed)\n",
"test_dataset = train_test[\"test\"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Random Baseline"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"# Start tracking emissions\n",
"tracker.start()\n",
"tracker.start_task(\"inference\")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"\n",
"#--------------------------------------------------------------------------------------------\n",
"# YOUR MODEL INFERENCE CODE HERE\n",
"# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.\n",
"#-------------------------------------------------------------------------------------------- \n",
"\n",
"# Make random predictions (placeholder for actual model inference)\n",
"\n",
"predictions = []\n",
"true_labels = []\n",
"pred_boxes = []\n",
"true_boxes_list = [] # List of lists, each inner list contains boxes for one image\n",
"\n",
"for example in test_dataset:\n",
" # Parse true annotation (YOLO format: class_id x_center y_center width height)\n",
" annotation = example.get(\"annotations\", \"\").strip()\n",
" has_smoke = len(annotation) > 0\n",
" true_labels.append(int(has_smoke))\n",
" \n",
" # Make random classification prediction\n",
" pred_has_smoke = random.random() > 0.5\n",
" predictions.append(int(pred_has_smoke))\n",
" \n",
" # If there's a true box, parse it and make random box prediction\n",
" if has_smoke:\n",
" # Parse all true boxes from the annotation\n",
" image_true_boxes = parse_boxes(annotation)\n",
" true_boxes_list.append(image_true_boxes)\n",
" \n",
" # For baseline, make one random box prediction per image\n",
" # In a real model, you might want to predict multiple boxes\n",
" random_box = [\n",
" random.random(), # x_center\n",
" random.random(), # y_center\n",
" random.random() * 0.5, # width (max 0.5)\n",
" random.random() * 0.5 # height (max 0.5)\n",
" ]\n",
" pred_boxes.append(random_box)\n",
"\n",
"\n",
"#--------------------------------------------------------------------------------------------\n",
"# YOUR MODEL INFERENCE STOPS HERE\n",
"#-------------------------------------------------------------------------------------------- "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Stop tracking emissions\n",
"emissions_data = tracker.stop_task()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"# Calculate classification metrics\n",
"classification_accuracy = accuracy_score(true_labels, predictions)\n",
"classification_precision = precision_score(true_labels, predictions)\n",
"classification_recall = recall_score(true_labels, predictions)\n",
"\n",
"# Calculate mean IoU for object detection (only for images with smoke)\n",
"# For each image, we compute the max IoU between the predicted box and all true boxes\n",
"ious = []\n",
"for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):\n",
" max_iou = compute_max_iou(true_boxes, pred_box)\n",
" ious.append(max_iou)\n",
"\n",
"mean_iou = float(np.mean(ious)) if ious else 0.0"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'submission_timestamp': '2025-01-22T15:57:37.288173',\n",
" 'classification_accuracy': 0.5001692620176033,\n",
" 'classification_precision': 0.8397129186602871,\n",
" 'classification_recall': 0.4972677595628415,\n",
" 'mean_iou': 0.002819781629108398,\n",
" 'energy_consumed_wh': 0.779355299496116,\n",
" 'emissions_gco2eq': 0.043674291628462855,\n",
" 'emissions_data': {'run_id': '4e750cd5-60f0-444c-baee-b5f7b31f784b',\n",
" 'duration': 51.72819679998793,\n",
" 'emissions': 4.3674291628462856e-05,\n",
" 'emissions_rate': 8.445163379568943e-07,\n",
" 'cpu_power': 42.5,\n",
" 'gpu_power': 0.0,\n",
" 'ram_power': 11.755242347717285,\n",
" 'cpu_energy': 0.0006104993474311617,\n",
" 'gpu_energy': 0,\n",
" 'ram_energy': 0.00016885595206495442,\n",
" 'energy_consumed': 0.0007793552994961161,\n",
" 'country_name': 'France',\n",
" 'country_iso_code': 'FRA',\n",
" 'region': 'île-de-france',\n",
" 'cloud_provider': '',\n",
" 'cloud_region': '',\n",
" 'os': 'Windows-11-10.0.22631-SP0',\n",
" 'python_version': '3.12.7',\n",
" 'codecarbon_version': '3.0.0_rc0',\n",
" 'cpu_count': 12,\n",
" 'cpu_model': '13th Gen Intel(R) Core(TM) i7-1365U',\n",
" 'gpu_count': None,\n",
" 'gpu_model': None,\n",
" 'ram_total_size': 31.347312927246094,\n",
" 'tracking_mode': 'machine',\n",
" 'on_cloud': 'N',\n",
" 'pue': 1.0},\n",
" 'dataset_config': {'dataset_name': 'pyronear/pyro-sdis',\n",
" 'test_size': 0.2,\n",
" 'test_seed': 42}}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"# Prepare results dictionary\n",
"results = {\n",
" \"submission_timestamp\": datetime.now().isoformat(),\n",
" \"classification_accuracy\": float(classification_accuracy),\n",
" \"classification_precision\": float(classification_precision),\n",
" \"classification_recall\": float(classification_recall),\n",
" \"mean_iou\": mean_iou,\n",
" \"energy_consumed_wh\": emissions_data.energy_consumed * 1000,\n",
" \"emissions_gco2eq\": emissions_data.emissions * 1000,\n",
" \"emissions_data\": clean_emissions_data(emissions_data),\n",
" \"dataset_config\": {\n",
" \"dataset_name\": request.dataset_name,\n",
" \"test_size\": request.test_size,\n",
" \"test_seed\": request.test_seed\n",
" }\n",
"}\n",
"results"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|