import gradio as gr import os from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFaceHub from pathlib import Path import chromadb llm_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1"] llm_names_simple = [os.path.basename(llm) for llm in llm_names] def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [loader.load() for loader in loaders] text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb def load_db(): embedding = HuggingFaceEmbeddings() vectordb = Chroma(embedding_function=embedding) return vectordb def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): progress(0.1, desc="Initializing HF tokenizer...") progress(0.5, desc="Initializing HF Hub...") model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": model_kwargs["load_in_8bit"] = True llm = HuggingFaceHub(repo_id=llm_model, model_kwargs=model_kwargs) progress(0.75, desc="Defining buffer memory...") memory = ConversationBufferMemory(memory_key="chat_history", output_key='answer', return_messages=True) retriever = vector_db.as_retriever() progress(0.8, desc="Defining retrieval chain...") qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, ) progress(0.9, desc="Done!") return qa_chain def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] collection_name = Path(list_file_path[0]).stem progress(0.25, desc="Loading document...") doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) progress(0.5, desc="Generating vector database...") vector_db = create_db(doc_splits, collection_name) progress(0.9, desc="Done!") return vector_db, collection_name, "Complete!" def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm_name = llm_names[llm_option] qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) return qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [f"User: {user_message}\nAssistant: {bot_message}" for user_message, bot_message in chat_history] return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page def upload_file(file_obj): list_file_path = [file_obj.name for _ in file_obj] return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown("""