Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,15 +24,8 @@ import accelerate
|
|
24 |
# default_persist_directory = './chroma_HF/'
|
25 |
|
26 |
llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
27 |
-
|
28 |
-
|
29 |
-
llm_name3 = "meta-llama/Llama-2-7b-chat-hf"
|
30 |
-
llm_name4 = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
31 |
-
llm_name5 = "microsoft/phi-2"
|
32 |
-
llm_name6 = "mosaicml/mpt-7b-instruct"
|
33 |
-
llm_name7 = "tiiuae/falcon-7b-instruct"
|
34 |
-
llm_name8 = "google/flan-t5-xxl"
|
35 |
-
list_llm = [llm_name0, llm_name1, llm_name2, llm_name3, llm_name4, llm_name5, llm_name6, llm_name7, llm_name8]
|
36 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
37 |
|
38 |
# Load PDF document and create doc splits
|
@@ -78,25 +71,6 @@ def load_db():
|
|
78 |
# Initialize langchain LLM chain
|
79 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
80 |
progress(0.1, desc="Initializing HF tokenizer...")
|
81 |
-
# HuggingFacePipeline uses local model
|
82 |
-
# Note: it will download model locally...
|
83 |
-
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
84 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
85 |
-
# pipeline=transformers.pipeline(
|
86 |
-
# "text-generation",
|
87 |
-
# model=llm_model,
|
88 |
-
# tokenizer=tokenizer,
|
89 |
-
# torch_dtype=torch.bfloat16,
|
90 |
-
# trust_remote_code=True,
|
91 |
-
# device_map="auto",
|
92 |
-
# # max_length=1024,
|
93 |
-
# max_new_tokens=max_tokens,
|
94 |
-
# do_sample=True,
|
95 |
-
# top_k=top_k,
|
96 |
-
# num_return_sequences=1,
|
97 |
-
# eos_token_id=tokenizer.eos_token_id
|
98 |
-
# )
|
99 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
100 |
|
101 |
# HuggingFaceHub uses HF inference endpoints
|
102 |
progress(0.5, desc="Initializing HF Hub...")
|
|
|
24 |
# default_persist_directory = './chroma_HF/'
|
25 |
|
26 |
llm_name0 = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
27 |
+
|
28 |
+
list_llm = [llm_name0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
30 |
|
31 |
# Load PDF document and create doc splits
|
|
|
71 |
# Initialize langchain LLM chain
|
72 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
73 |
progress(0.1, desc="Initializing HF tokenizer...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
# HuggingFaceHub uses HF inference endpoints
|
76 |
progress(0.5, desc="Initializing HF Hub...")
|