TelegramBOT / main.py
MatteoScript's picture
Update main.py
1ad1813 verified
raw
history blame
14 kB
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware # Importa il middleware CORS
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from datetime import datetime
from gradio_client import Client
import base64
import requests
import os
import socket
import time
from enum import Enum
import random
import aiohttp
import asyncio
#--------------------------------------------------- Definizione Server FAST API ------------------------------------------------------
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class InputData(BaseModel):
input: str
temperature: float = 0.2
max_new_tokens: int = 30000
top_p: float = 0.95
repetition_penalty: float = 1.0
class InputDataAsync(BaseModel):
input: str
temperature: float = 0.2
max_new_tokens: int = 30000
top_p: float = 0.95
repetition_penalty: float = 1.0
NumeroGenerazioni: int = 1
class PostSpazio(BaseModel):
nomeSpazio: str
input: str = ''
api_name: str = "/chat"
#--------------------------------------------------- Generazione TESTO ------------------------------------------------------
@app.post("/Genera")
def read_root(request: Request, input_data: InputData):
input_text = input_data.input
temperature = input_data.temperature
max_new_tokens = input_data.max_new_tokens
top_p = input_data.top_p
repetition_penalty = input_data.repetition_penalty
history = []
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
return {"response": generated_response}
def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False)
return output
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
prompt += f"[{now}] [INST] {message} [/INST]"
return prompt
#--------------------------------------------------- Generazione TESTO ASYNC ------------------------------------------------------
@app.post("/GeneraAsync")
def read_rootAsync(request: Request, input_data: InputDataAsync):
print(input_data.input)
data = {
'input': input_data.input,
'temperature': input_data.temperature,
'max_new_tokens': input_data.max_new_tokens,
'top_p': input_data.top_p,
'repetition_penalty': input_data.repetition_penalty
}
result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", data, input_data.NumeroGenerazioni))
return {"response": result_data}
#--------------------------------------------------- Chiamata API Asincrona ------------------------------------------------------
async def make_request(session, token, data, url):
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + token
}
async with session.post(url, headers=headers, json=data) as response:
result_data = await response.json()
print(result_data)
return result_data
async def GeneraTestoAsync(url, data, NumeroGenerazioni):
token = os.getenv('TOKEN')
async with aiohttp.ClientSession() as session:
tasks = [make_request(session, token, data, url) for _ in range(NumeroGenerazioni)]
return await asyncio.gather(*tasks)
#--------------------------------------------------- Generazione IMMAGINE ------------------------------------------------------
style_image = {
"PROFESSIONAL-PHOTO": {
"descrizione": "Professional photo {prompt} . Vivid colors, Mirrorless, 35mm lens, f/1.8 aperture, ISO 100, natural daylight",
"negativePrompt": "out of frame, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
},
"CINEMATIC-PHOTO": {
"descrizione": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negativePrompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
},
"CINEMATIC-PORTRAIT": {
"descrizione": "cinematic portrait {prompt} 8k, ultra realistic, good vibes, vibrant",
"negativePrompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
},
"LINE-ART-DRAWING": {
"descrizione": "line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
"negativePrompt": "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic"
},
"COMIC": {
"descrizione": "comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed",
"negativePrompt": "photograph, deformed, glitch, noisy, realistic, stock photo"
},
"ADVERTISING-POSTER-STYLE": {
"descrizione": "advertising poster style {prompt} . Professional, modern, product-focused, commercial, eye-catching, highly detailed",
"negativePrompt": "noisy, blurry, amateurish, sloppy, unattractive"
},
"RETAIL-PACKAGING-STYLE": {
"descrizione": "retail packaging style {prompt} . vibrant, enticing, commercial, product-focused, eye-catching, professional, highly detailed",
"negativePrompt": "noisy, blurry, amateurish, sloppy, unattractive"
},
"GRAFFITI-STYLE": {
"descrizione": "graffiti style {prompt} . street art, vibrant, urban, detailed, tag, mural",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic"
},
"POP-ART-STYLE": {
"descrizione": "pop Art style {prompt} . bright colors, bold outlines, popular culture themes, ironic or kitsch",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, minimalist"
},
"ISOMETRIC-STYLE": {
"descrizione": "isometric style {prompt} . vibrant, beautiful, crisp, detailed, ultra detailed, intricate",
"negativePrompt": "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy, realistic, photographic"
},
"LOW-POLY-STYLE": {
"descrizione": "low-poly style {prompt}. ambient occlusion, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
"negativePrompt": "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
},
"CLAYMATION-STYLE": {
"descrizione": "claymation style {prompt} . sculpture, clay art, centered composition, play-doh",
"negativePrompt": ""
},
"PROFESSIONAL-3D-MODEL": {
"descrizione": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negativePrompt": "ugly, deformed, noisy, low poly, blurry, painting"
},
"ANIME-ARTWORK": {
"descrizione": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negativePrompt": "photo, deformed, black and white, realism, disfigured, low contrast"
},
"ETHEREAL-FANTASY-CONCEPT-ART": {
"descrizione": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negativePrompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"
},
"CYBERNETIC-STYLE": {
"descrizione": "cybernetic style {prompt} . futuristic, technological, cybernetic enhancements, robotics, artificial intelligence themes",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, historical, medieval"
},
"FUTURISTIC-STYLE": {
"descrizione": "futuristic style {prompt} . sleek, modern, ultramodern, high tech, detailed",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vintage, antique"
},
"SCI-FI-STYLE": {
"descrizione": "sci-fi style {prompt} . futuristic, technological, alien worlds, space themes, advanced civilizations",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, historical, medieval"
},
"DIGITAL-ART": {
"descrizione": "Digital Art {prompt} . vibrant, cute, digital, handmade",
"negativePrompt": ""
},
"SIMPLE-LOGO": {
"descrizione": "Minimalist Logo {prompt} . material design, primary colors, stylized, minimalist",
"negativePrompt": "3D, high detail, noise, grainy, blurry, painting, drawing, photo, disfigured"
},
"MINIMALISTIC-LOGO": {
"descrizione": "Ultra-minimalist Material Design logo for a BRAND: {prompt} . simple, few colors, clean lines, minimal details, modern color palette, no shadows",
"negativePrompt": "3D, high detail, noise, grainy, blurry, painting, drawing, photo, disfigured"
}
}
class InputImage(BaseModel):
input: str
negativePrompt: str = ''
style: str = ''
steps: int = 25
cfg: int = 6
seed: int = -1
@app.post("/Immagine")
def generate_image(request: Request, input_data: InputImage):
client = Client("https://manjushri-sdxl-1-0.hf.space/")
if input_data.style:
print(input_data.style)
if input_data.style == 'RANDOM':
random_style = random.choice(list(style_image.keys()))
style_info = style_image[random_style]
input_data.input = style_info["descrizione"].format(prompt=input_data.input)
input_data.negativePrompt = style_info["negativePrompt"]
elif input_data.style in style_image:
style_info = style_image[input_data.style]
input_data.input = style_info["descrizione"].format(prompt=input_data.input)
input_data.negativePrompt = style_info["negativePrompt"]
max_attempts = 2
attempt = 0
while attempt < max_attempts:
try:
result = client.predict(
input_data.input, # str in 'What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!' Textbox component
input_data.negativePrompt, # str in 'What you Do Not want the AI to generate. 77 Token Limit' Textbox component
1024, # int | float (numeric value between 512 and 1024) in 'Height' Slider component
1024, # int | float (numeric value between 512 and 1024) in 'Width' Slider component
input_data.cfg, # int | float (numeric value between 1 and 15) in 'Guidance Scale: How Closely the AI follows the Prompt' Slider component
input_data.steps, # int | float (numeric value between 25 and 100) in 'Number of Iterations' Slider component
0, # int | float (numeric value between 0 and 999999999999999999) in 'Seed: 0 is Random' Slider component
"Yes", # str in 'Upscale?' Radio component
"", # str in 'Embedded Prompt' Textbox component
"", # str in 'Embedded Negative Prompt' Textbox component
0.99, # int | float (numeric value between 0.7 and 0.99) in 'Refiner Denoise Start %' Slider component
100, # int | float (numeric value between 1 and 100) in 'Refiner Number of Iterations %' Slider component
api_name="/predict"
)
image_url = result[0]
print(image_url)
with open(image_url, 'rb') as img_file:
img_binary = img_file.read()
img_base64 = base64.b64encode(img_binary).decode('utf-8')
return {"response": img_base64}
except requests.exceptions.HTTPError as e:
time.sleep(1)
attempt += 1
if attempt < max_attempts:
continue
else:
return {"error": "Errore interno del server persistente"}
return {"error": "Numero massimo di tentativi raggiunto"}
#--------------------------------------------------- API PostSpazio ------------------------------------------------------
@app.post("/PostSpazio")
def generate_postspazio(request: Request, input_data: PostSpazio):
client = Client(input_data.nomeSpazio)
result = client.predict(
input_data.input,
api_name=input_data.api_name
)
return {"response": result}
@app.get("/")
def read_general():
return {"response": "Benvenuto. Per maggiori info: https://matteoscript-fastapi.hf.space/docs"}