Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Commit 
							
							·
						
						9d25320
	
1
								Parent(s):
							
							a741634
								
refined UI
Browse files- __pycache__/chat_client.cpython-39.pyc +0 -0
 - __pycache__/mistral7b.cpython-39.pyc +0 -0
 - app.py +156 -127
 - mistral7b.py → chat_client.py +0 -0
 
    	
        __pycache__/chat_client.cpython-39.pyc
    ADDED
    
    | 
         Binary file (1.19 kB). View file 
     | 
| 
         | 
    	
        __pycache__/mistral7b.cpython-39.pyc
    ADDED
    
    | 
         Binary file (1.18 kB). View file 
     | 
| 
         | 
    	
        app.py
    CHANGED
    
    | 
         @@ -1,5 +1,5 @@ 
     | 
|
| 1 | 
         
             
            import streamlit as st
         
     | 
| 2 | 
         
            -
            from  
     | 
| 3 | 
         
             
            import time
         
     | 
| 4 | 
         
             
            import pandas as pd
         
     | 
| 5 | 
         
             
            import pinecone
         
     | 
| 
         @@ -15,13 +15,20 @@ pinecone.init( 
     | 
|
| 15 | 
         
             
            	environment='gcp-starter'      
         
     | 
| 16 | 
         
             
            )   
         
     | 
| 17 | 
         | 
| 18 | 
         
            -
             
     | 
| 19 | 
         
            -
             
     | 
| 20 | 
         
            -
             
     | 
| 21 | 
         
             
                "Mixtral 8x7B v0.1" :"mistralai/Mixtral-8x7B-Instruct-v0.1", 
         
     | 
| 22 | 
         
             
                "Mistral 7B v0.1" : "mistralai/Mistral-7B-Instruct-v0.1",
         
     | 
| 23 | 
         
             
            }
         
     | 
| 24 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 25 | 
         
             
                """
         
     | 
| 26 | 
         
             
                You are not Mistral AI, but rather a chat bot trained at Ikigai Labs. Whenever asked, you need to answer as Ikigai Labs' assistant.
         
     | 
| 27 | 
         
             
                Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
         
     | 
| 
         @@ -36,8 +43,7 @@ prompt_injection = [ 
     | 
|
| 36 | 
         
             
                Is there anything else you would like to know about Ikigai Labs or their products?
         
     | 
| 37 | 
         
             
                """
         
     | 
| 38 | 
         
             
            ]
         
     | 
| 39 | 
         
            -
             
     | 
| 40 | 
         
            -
            identity_change = [
         
     | 
| 41 | 
         
             
                """
         
     | 
| 42 | 
         
             
                You are Ikigai Chat from now on, so answer accordingly.
         
     | 
| 43 | 
         
             
                """,
         
     | 
| 
         @@ -47,10 +53,9 @@ identity_change = [ 
     | 
|
| 47 | 
         
             
                """
         
     | 
| 48 | 
         
             
            ]
         
     | 
| 49 | 
         | 
| 50 | 
         
            -
             
     | 
| 51 | 
         
             
            def gen_augmented_prompt(prompt, top_k) :
         
     | 
| 52 | 
         
            -
                query_vector =  
     | 
| 53 | 
         
            -
                res =  
     | 
| 54 | 
         
             
                matches = res['matches']
         
     | 
| 55 | 
         | 
| 56 | 
         
             
                context = ""
         
     | 
| 
         @@ -59,8 +64,6 @@ def gen_augmented_prompt(prompt, top_k) : 
     | 
|
| 59 | 
         
             
                    context+=match["metadata"]["chunk"] + "\n\n"
         
     | 
| 60 | 
         
             
                    links.append(match["metadata"]["link"])
         
     | 
| 61 | 
         | 
| 62 | 
         
            -
                
         
     | 
| 63 | 
         
            -
             
     | 
| 64 | 
         
             
                generated_prompt = f"""
         
     | 
| 65 | 
         
             
                FOR THIS GIVEN CONTEXT {context},
         
     | 
| 66 | 
         | 
| 
         @@ -69,148 +72,174 @@ def gen_augmented_prompt(prompt, top_k) : 
     | 
|
| 69 | 
         
             
                """
         
     | 
| 70 | 
         
             
                return generated_prompt, links
         
     | 
| 71 | 
         | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
                 
     | 
| 74 | 
         
            -
             
     | 
| 75 | 
         
            -
            }
         
     | 
| 76 | 
         
            -
            df = pd.DataFrame(data)
         
     | 
| 77 | 
         
            -
             
     | 
| 78 | 
         
            -
             
     | 
| 79 | 
         
            -
            st.set_page_config(
         
     | 
| 80 | 
         
            -
                    page_title="Ikigai Chat",
         
     | 
| 81 | 
         
            -
                    page_icon="🤖",
         
     | 
| 82 | 
         
            -
            )
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
            -
            if "messages" not in st.session_state:
         
     | 
| 85 | 
         
            -
                st.session_state.messages = []
         
     | 
| 86 | 
         | 
| 87 | 
         
            -
            if "tokens_used" not in st.session_state:
         
     | 
| 88 | 
         
            -
             
     | 
| 89 | 
         | 
| 90 | 
         
            -
            if " 
     | 
| 91 | 
         
            -
             
     | 
| 92 | 
         | 
| 93 | 
         
            -
            if "temp" not in st.session_state:
         
     | 
| 94 | 
         
            -
             
     | 
| 95 | 
         | 
| 96 | 
         
            -
            if "history" not in st.session_state:
         
     | 
| 97 | 
         
            -
             
     | 
| 98 | 
         | 
| 99 | 
         
            -
            if "top_k" not in st.session_state:
         
     | 
| 100 | 
         
            -
             
     | 
| 101 | 
         | 
| 102 | 
         
            -
            if "repetion_penalty" not in st.session_state :
         
     | 
| 103 | 
         
            -
             
     | 
| 104 | 
         | 
| 105 | 
         
            -
            if "rag_enabled" not in st.session_state :
         
     | 
| 106 | 
         
            -
             
     | 
| 107 | 
         | 
| 108 | 
         
            -
            if "chat_bot" not in st.session_state :
         
     | 
| 109 | 
         
            -
             
     | 
| 110 | 
         | 
| 111 | 
         
            -
             
     | 
| 112 | 
         
            -
                 
     | 
| 113 | 
         
            -
             
     | 
| 114 | 
         
            -
             
     | 
| 115 | 
         
            -
             
     | 
| 116 | 
         
            -
             
     | 
| 117 | 
         
            -
             
     | 
| 118 | 
         | 
| 119 | 
         
            -
                 
     | 
| 120 | 
         
            -
             
     | 
| 121 | 
         
            -
                     
     | 
| 122 | 
         
            -
             
     | 
| 123 | 
         
            -
                     
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 124 | 
         | 
| 125 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 126 | 
         | 
| 127 | 
         
            -
             
     | 
| 128 | 
         
            -
                
         
     | 
| 129 | 
         
            -
                 
     | 
| 130 | 
         
            -
             
     | 
| 131 | 
         
            -
                 
     | 
| 132 | 
         
            -
             
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 133 | 
         | 
| 134 | 
         
            -
                 
     | 
| 135 | 
         
            -
             
     | 
| 136 | 
         
            -
             
     | 
| 137 | 
         
            -
             
     | 
| 138 | 
         
            -
                 
     | 
| 139 | 
         
            -
             
     | 
| 140 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 141 | 
         | 
| 142 | 
         
            -
                 
     | 
| 143 | 
         
            -
             
     | 
| 144 | 
         
            -
                """)
         
     | 
| 145 | 
         | 
| 146 | 
         
            -
             
     | 
| 147 | 
         
            -
            st. 
     | 
| 148 | 
         
            -
            # st.caption("Maintained and developed by Pragnesh Barik.")
         
     | 
| 149 | 
         
            -
             
     | 
| 150 | 
         
            -
            with st.expander("What is Ikigai Chat ?"):
         
     | 
| 151 | 
         
            -
                st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of 
         
     | 
| 152 | 
         
            -
                            of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries. 
         
     | 
| 153 | 
         
            -
                            This approach ensures a more refined and tailored response to user inquiries.""")
         
     | 
| 154 | 
         | 
| 155 | 
         
            -
                 
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 156 | 
         | 
| 157 | 
         
            -
             
     | 
| 158 | 
         
            -
                with st. 
     | 
| 159 | 
         
            -
                     
     | 
| 
         | 
|
| 160 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 161 | 
         | 
| 162 | 
         
             
            if prompt := st.chat_input("Chat with Ikigai Docs..."):
         
     | 
| 163 | 
         
             
                st.chat_message("user").markdown(prompt)
         
     | 
| 164 | 
         
             
                st.session_state.messages.append({"role": "user", "content": prompt})
         
     | 
| 165 | 
         | 
| 
         | 
|
| 166 | 
         | 
| 167 | 
         
            -
                tick = time.time()
         
     | 
| 168 | 
         | 
| 169 | 
         
            -
                links = []
         
     | 
| 170 | 
         
            -
                if st.session_state.rag_enabled :
         
     | 
| 171 | 
         
            -
                    with st.spinner("Fetching relevent documents from Ikigai Docs...."):
         
     | 
| 172 | 
         
            -
                        prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
         
     | 
| 173 | 
         
            -
                    
         
     | 
| 174 | 
         
            -
                with st.spinner("Generating response...") :
         
     | 
| 175 | 
         
            -
                    chat_stream = chat(prompt, st.session_state.history,chat_client=chat_bots[st.session_state.chat_bot] ,
         
     | 
| 176 | 
         
            -
                                   temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
         
     | 
| 177 | 
         
            -
                tock = time.time()
         
     | 
| 178 | 
         
            -
             
     | 
| 179 | 
         
            -
                st.session_state.inference_time.append(tock - tick)
         
     | 
| 180 | 
         
            -
                
         
     | 
| 181 | 
         
            -
             
     | 
| 182 | 
         
            -
             
     | 
| 183 | 
         
            -
                formatted_links = ", ".join(links) 
         
     | 
| 184 | 
         
             
                with st.chat_message("assistant"):
         
     | 
| 185 | 
         
            -
                    full_response = ""
         
     | 
| 186 | 
         
             
                    placeholder = st.empty()
         
     | 
| 
         | 
|
| 187 | 
         
             
                    if st.session_state.rag_enabled :
         
     | 
| 188 | 
         
            -
                         
     | 
| 189 | 
         
            -
                            if chunk.token.text!='</s>' :
         
     | 
| 190 | 
         
            -
                                full_response += chunk.token.text
         
     | 
| 191 | 
         
            -
             
     | 
| 192 | 
         
            -
                            placeholder.markdown(full_response + "▌")
         
     | 
| 193 | 
         
            -
                        
         
     | 
| 194 | 
         
            -
                        placeholder.markdown(full_response)
         
     | 
| 195 | 
         
            -
                        st.info( f"""\n\nFetched from :\n {formatted_links}""")
         
     | 
| 196 | 
         
            -
                    else :
         
     | 
| 197 | 
         
            -
                        for chunk in chat_stream :
         
     | 
| 198 | 
         
            -
                            if chunk.token.text!='</s>' :
         
     | 
| 199 | 
         
            -
                                full_response += chunk.token.text
         
     | 
| 200 | 
         
            -
                            placeholder.markdown(full_response + "▌")
         
     | 
| 201 | 
         
            -
                        placeholder.markdown(full_response)
         
     | 
| 202 | 
         
            -
                
         
     | 
| 203 | 
         
            -
                len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
         
     | 
| 204 | 
         
            -
                st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
         
     | 
| 205 | 
         
            -
             
     | 
| 206 | 
         
            -
             
     | 
| 207 | 
         | 
| 208 | 
         
             
                st.session_state.history.append([prompt, full_response])
         
     | 
| 209 | 
         
            -
                st.session_state. 
     | 
| 210 | 
         
            -
                
         
     | 
| 211 | 
         
            -
             
     | 
| 212 | 
         
            -
                if st.session_state.rag_enabled :
         
     | 
| 213 | 
         
            -
                    st.session_state.messages.append(
         
     | 
| 214 | 
         
            -
                        {"role": "assistant", "content": full_response + f"""\n\nFetched from :\n {formatted_links}"""})
         
     | 
| 215 | 
         
            -
                else :
         
     | 
| 216 | 
         
            -
                    st.session_state.messages.append({"role": "assistant", "content": full_response})
         
     | 
| 
         | 
|
| 1 | 
         
             
            import streamlit as st
         
     | 
| 2 | 
         
            +
            from chat_client import chat
         
     | 
| 3 | 
         
             
            import time
         
     | 
| 4 | 
         
             
            import pandas as pd
         
     | 
| 5 | 
         
             
            import pinecone
         
     | 
| 
         | 
|
| 15 | 
         
             
            	environment='gcp-starter'      
         
     | 
| 16 | 
         
             
            )   
         
     | 
| 17 | 
         | 
| 18 | 
         
            +
            PINECONE_INDEX = pinecone.Index('ikigai-chat')
         
     | 
| 19 | 
         
            +
            TEXT_VECTORIZER = SentenceTransformer('all-distilroberta-v1')
         
     | 
| 20 | 
         
            +
            CHAT_BOTS = {
         
     | 
| 21 | 
         
             
                "Mixtral 8x7B v0.1" :"mistralai/Mixtral-8x7B-Instruct-v0.1", 
         
     | 
| 22 | 
         
             
                "Mistral 7B v0.1" : "mistralai/Mistral-7B-Instruct-v0.1",
         
     | 
| 23 | 
         
             
            }
         
     | 
| 24 | 
         
            +
            COST_PER_1000_TOKENS_INR = 0.139
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            st.set_page_config(
         
     | 
| 27 | 
         
            +
                    page_title="Ikigai Chat",
         
     | 
| 28 | 
         
            +
                    page_icon="🤖",
         
     | 
| 29 | 
         
            +
                )
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            SYSTEM_PROMPT = [
         
     | 
| 32 | 
         
             
                """
         
     | 
| 33 | 
         
             
                You are not Mistral AI, but rather a chat bot trained at Ikigai Labs. Whenever asked, you need to answer as Ikigai Labs' assistant.
         
     | 
| 34 | 
         
             
                Ikigai helps modern analysts and operations teams automate data-intensive business, finance, analytics, and supply-chain operations.
         
     | 
| 
         | 
|
| 43 | 
         
             
                Is there anything else you would like to know about Ikigai Labs or their products?
         
     | 
| 44 | 
         
             
                """
         
     | 
| 45 | 
         
             
            ]
         
     | 
| 46 | 
         
            +
            IDENTITY_CHANGE = [
         
     | 
| 
         | 
|
| 47 | 
         
             
                """
         
     | 
| 48 | 
         
             
                You are Ikigai Chat from now on, so answer accordingly.
         
     | 
| 49 | 
         
             
                """,
         
     | 
| 
         | 
|
| 53 | 
         
             
                """
         
     | 
| 54 | 
         
             
            ]
         
     | 
| 55 | 
         | 
| 
         | 
|
| 56 | 
         
             
            def gen_augmented_prompt(prompt, top_k) :
         
     | 
| 57 | 
         
            +
                query_vector = TEXT_VECTORIZER.encode(prompt).tolist()
         
     | 
| 58 | 
         
            +
                res = PINECONE_INDEX.query(vector=query_vector, top_k=top_k, include_metadata=True)
         
     | 
| 59 | 
         
             
                matches = res['matches']
         
     | 
| 60 | 
         | 
| 61 | 
         
             
                context = ""
         
     | 
| 
         | 
|
| 64 | 
         
             
                    context+=match["metadata"]["chunk"] + "\n\n"
         
     | 
| 65 | 
         
             
                    links.append(match["metadata"]["link"])
         
     | 
| 66 | 
         | 
| 
         | 
|
| 
         | 
|
| 67 | 
         
             
                generated_prompt = f"""
         
     | 
| 68 | 
         
             
                FOR THIS GIVEN CONTEXT {context},
         
     | 
| 69 | 
         | 
| 
         | 
|
| 72 | 
         
             
                """
         
     | 
| 73 | 
         
             
                return generated_prompt, links
         
     | 
| 74 | 
         | 
| 75 | 
         
            +
            def init_state() :
         
     | 
| 76 | 
         
            +
                if "messages" not in st.session_state:
         
     | 
| 77 | 
         
            +
                    st.session_state.messages = []
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 78 | 
         | 
| 79 | 
         
            +
                if "tokens_used" not in st.session_state:
         
     | 
| 80 | 
         
            +
                    st.session_state.tokens_used = 0
         
     | 
| 81 | 
         | 
| 82 | 
         
            +
                if "tps" not in st.session_state:
         
     | 
| 83 | 
         
            +
                    st.session_state.tps = 0
         
     | 
| 84 | 
         | 
| 85 | 
         
            +
                if "temp" not in st.session_state:
         
     | 
| 86 | 
         
            +
                    st.session_state.temp = 0.8
         
     | 
| 87 | 
         | 
| 88 | 
         
            +
                if "history" not in st.session_state:
         
     | 
| 89 | 
         
            +
                    st.session_state.history = [SYSTEM_PROMPT]
         
     | 
| 90 | 
         | 
| 91 | 
         
            +
                if "top_k" not in st.session_state:
         
     | 
| 92 | 
         
            +
                    st.session_state.top_k = 5
         
     | 
| 93 | 
         | 
| 94 | 
         
            +
                if "repetion_penalty" not in st.session_state :
         
     | 
| 95 | 
         
            +
                    st.session_state.repetion_penalty = 1
         
     | 
| 96 | 
         | 
| 97 | 
         
            +
                if "rag_enabled" not in st.session_state :
         
     | 
| 98 | 
         
            +
                    st.session_state.rag_enabled = True
         
     | 
| 99 | 
         | 
| 100 | 
         
            +
                if "chat_bot" not in st.session_state :
         
     | 
| 101 | 
         
            +
                    st.session_state.chat_bot = "Mixtral 8x7B v0.1"
         
     | 
| 102 | 
         | 
| 103 | 
         
            +
            def sidebar() :
         
     | 
| 104 | 
         
            +
                def retrieval_settings() :
         
     | 
| 105 | 
         
            +
                    st.markdown("# Retrieval Settings")
         
     | 
| 106 | 
         
            +
                    st.session_state.rag_enabled = st.toggle("Activate RAG", value=True)
         
     | 
| 107 | 
         
            +
                    st.session_state.top_k = st.slider(label="Documents to retrieve",
         
     | 
| 108 | 
         
            +
                            min_value=1, max_value=20, value=10, disabled=not st.session_state.rag_enabled)
         
     | 
| 109 | 
         
            +
                    st.markdown("---")
         
     | 
| 110 | 
         | 
| 111 | 
         
            +
                def model_analytics() :
         
     | 
| 112 | 
         
            +
                    st.markdown("# Model Analytics")
         
     | 
| 113 | 
         
            +
                    
         
     | 
| 114 | 
         
            +
                    st.write("Total tokens used :", st.session_state['tokens_used'])
         
     | 
| 115 | 
         
            +
                    st.write("Speed :", st.session_state['tps'], "  tokens/sec")
         
     | 
| 116 | 
         
            +
                    st.write("Total cost incurred :", round(
         
     | 
| 117 | 
         
            +
                        COST_PER_1000_TOKENS_INR * st.session_state['tokens_used'] / 1000, 3), "INR")
         
     | 
| 118 | 
         
            +
                    
         
     | 
| 119 | 
         
            +
                    st.markdown("---")
         
     | 
| 120 | 
         | 
| 121 | 
         
            +
                def model_settings() :
         
     | 
| 122 | 
         
            +
                    st.markdown("# Model Settings")
         
     | 
| 123 | 
         
            +
                    
         
     | 
| 124 | 
         
            +
                    st.session_state.chat_bot = st.sidebar.radio(
         
     | 
| 125 | 
         
            +
                        'Select one:', [key for key, value in CHAT_BOTS.items() ])
         
     | 
| 126 | 
         
            +
                    st.session_state.temp = st.slider(
         
     | 
| 127 | 
         
            +
                        label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
         
     | 
| 128 | 
         
            +
                    
         
     | 
| 129 | 
         
            +
                    st.session_state.max_tokens = st.slider(
         
     | 
| 130 | 
         
            +
                        label="New tokens to generate", min_value = 64, max_value=2048, step= 32, value=512
         
     | 
| 131 | 
         
            +
                    )
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    st.session_state.repetion_penalty = st.slider(
         
     | 
| 134 | 
         
            +
                        label="Repetion Penalty", min_value=0., max_value=1., step=0.1, value=1. 
         
     | 
| 135 | 
         
            +
                    )
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                with st.sidebar:
         
     | 
| 138 | 
         
            +
                    retrieval_settings()
         
     | 
| 139 | 
         
            +
                    model_analytics()
         
     | 
| 140 | 
         
            +
                    model_settings()
         
     | 
| 141 | 
         
            +
                    
         
     | 
| 142 | 
         
            +
                    st.markdown("""
         
     | 
| 143 | 
         
            +
                    > **2023 ©️ [Pragnesh Barik](https://barik.super.site) 🔗**
         
     | 
| 144 | 
         
            +
                    """)
         
     | 
| 145 | 
         | 
| 146 | 
         
            +
            def header() :
         
     | 
| 147 | 
         
            +
                data = {
         
     | 
| 148 | 
         
            +
                "Attribute": ["LLM", "Text Vectorizer", "Vector Database","CPU", "System RAM"],
         
     | 
| 149 | 
         
            +
                "Information": ["Mixtral-8x7B-Instruct-v0.1","all-distilroberta-v1", "Hosted Pinecone" ,"2 vCPU", "16 GB"]
         
     | 
| 150 | 
         
            +
                }
         
     | 
| 151 | 
         
            +
                df = pd.DataFrame(data)
         
     | 
| 152 | 
         
            +
                st.image("ikigai.svg")
         
     | 
| 153 | 
         
            +
                st.title("Ikigai Chat")
         
     | 
| 154 | 
         
            +
                with st.expander("What is Ikigai Chat ?"):
         
     | 
| 155 | 
         
            +
                    st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of 
         
     | 
| 156 | 
         
            +
                                of Retrieval Augmented Generation (RAG), Its primary function revolves around maintaining an extensive repository of Ikigai Docs and providing users with answers that align with their queries. 
         
     | 
| 157 | 
         
            +
                                This approach ensures a more refined and tailored response to user inquiries.""")
         
     | 
| 158 | 
         
            +
                    
         
     | 
| 159 | 
         
            +
                    st.table(df)
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            def chat_box() :
         
     | 
| 162 | 
         
            +
                for message in st.session_state.messages:
         
     | 
| 163 | 
         
            +
                    with st.chat_message(message["role"]):
         
     | 
| 164 | 
         
            +
                        st.markdown(message["content"])
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
            def feedback_buttons() :
         
     | 
| 167 | 
         
            +
                is_visible = True
         
     | 
| 168 | 
         
            +
                def click_handler() :
         
     | 
| 169 | 
         
            +
                    is_visible = False
         
     | 
| 170 | 
         
            +
                if is_visible :
         
     | 
| 171 | 
         
            +
                    col1, col2 = st.columns(2)
         
     | 
| 172 | 
         
            +
                    with col1 :
         
     | 
| 173 | 
         
            +
                        st.button("👍 Satisfied", on_click = click_handler,type="primary")
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    with col2 :
         
     | 
| 176 | 
         
            +
                        st.button("👎 Disatisfied", on_click=click_handler, type="secondary")
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            def generate_chat_stream(prompt) :
         
     | 
| 179 | 
         
            +
                links = []
         
     | 
| 180 | 
         
            +
                if st.session_state.rag_enabled :
         
     | 
| 181 | 
         
            +
                    with st.spinner("Fetching relevent documents from Ikigai Docs...."):
         
     | 
| 182 | 
         
            +
                        prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
         
     | 
| 183 | 
         
            +
                    
         
     | 
| 184 | 
         
            +
                with st.spinner("Generating response...") :
         
     | 
| 185 | 
         
            +
                    chat_stream = chat(prompt, st.session_state.history,chat_client=CHAT_BOTS[st.session_state.chat_bot] ,
         
     | 
| 186 | 
         
            +
                                   temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
         
     | 
| 187 | 
         | 
| 188 | 
         
            +
                return chat_stream, links
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
            def stream_handler(chat_stream, placeholder) :
         
     | 
| 191 | 
         
            +
                start_time = time.time()
         
     | 
| 192 | 
         
            +
                full_response = ''
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                for chunk in chat_stream :
         
     | 
| 195 | 
         
            +
                    if chunk.token.text!='</s>' :
         
     | 
| 196 | 
         
            +
                        full_response += chunk.token.text
         
     | 
| 197 | 
         
            +
                        placeholder.markdown(full_response + "▌")
         
     | 
| 198 | 
         
            +
                placeholder.markdown(full_response)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                end_time = time.time()
         
     | 
| 201 | 
         
            +
                elapsed_time = end_time - start_time
         
     | 
| 202 | 
         
            +
                total_tokens_processed = len(full_response.split())
         
     | 
| 203 | 
         
            +
                tokens_per_second = total_tokens_processed // elapsed_time
         
     | 
| 204 | 
         
            +
                len_response = (len(prompt.split()) + len(full_response.split())) * 1.25
         
     | 
| 205 | 
         
            +
                col1, col2, col3 = st.columns(3)
         
     | 
| 206 | 
         | 
| 207 | 
         
            +
                with col1 :
         
     | 
| 208 | 
         
            +
                    st.write(f"**{tokens_per_second} tokens/second**")
         
     | 
| 
         | 
|
| 209 | 
         | 
| 210 | 
         
            +
                with col2 :
         
     | 
| 211 | 
         
            +
                    st.write(f"**{int(len_response)} tokens generated**")
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 212 | 
         | 
| 213 | 
         
            +
                with col3 :
         
     | 
| 214 | 
         
            +
                    st.write(f"**₹ {round(len_response * COST_PER_1000_TOKENS_INR / 1000, 5)} cost incurred**" )
         
     | 
| 215 | 
         
            +
                    
         
     | 
| 216 | 
         
            +
                st.session_state['tps'] = tokens_per_second
         
     | 
| 217 | 
         
            +
                st.session_state["tokens_used"] = len_response + st.session_state["tokens_used"]
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                return full_response
         
     | 
| 220 | 
         | 
| 221 | 
         
            +
            def show_source(links) :
         
     | 
| 222 | 
         
            +
                with st.expander("Show source") :
         
     | 
| 223 | 
         
            +
                    for i, link in enumerate(links) :
         
     | 
| 224 | 
         
            +
                        st.info(f"{link}")
         
     | 
| 225 | 
         | 
| 226 | 
         
            +
            init_state()
         
     | 
| 227 | 
         
            +
            sidebar()
         
     | 
| 228 | 
         
            +
            header()
         
     | 
| 229 | 
         
            +
            chat_box()
         
     | 
| 230 | 
         | 
| 231 | 
         
             
            if prompt := st.chat_input("Chat with Ikigai Docs..."):
         
     | 
| 232 | 
         
             
                st.chat_message("user").markdown(prompt)
         
     | 
| 233 | 
         
             
                st.session_state.messages.append({"role": "user", "content": prompt})
         
     | 
| 234 | 
         | 
| 235 | 
         
            +
                chat_stream, links = generate_chat_stream(prompt)
         
     | 
| 236 | 
         | 
| 
         | 
|
| 237 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 238 | 
         
             
                with st.chat_message("assistant"):
         
     | 
| 
         | 
|
| 239 | 
         
             
                    placeholder = st.empty()
         
     | 
| 240 | 
         
            +
                    full_response = stream_handler(chat_stream, placeholder)
         
     | 
| 241 | 
         
             
                    if st.session_state.rag_enabled :
         
     | 
| 242 | 
         
            +
                        show_source(links)
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 243 | 
         | 
| 244 | 
         
             
                st.session_state.history.append([prompt, full_response])
         
     | 
| 245 | 
         
            +
                st.session_state.messages.append({"role": "assistant", "content": full_response})
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
    	
        mistral7b.py → chat_client.py
    RENAMED
    
    | 
         
            File without changes
         
     |