from fastapi import FastAPI from huggingface_hub import InferenceClient app = FastAPI() client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt @app.get("/") def read_root(): user_input = "Come Stai?" # Puoi passare l'input desiderato da qui history = [] # Puoi definire la history se necessario generated_response = next(generate(user_input, history)) # Ottieni la risposta generata return {"response": generated_response} # Restituisci la risposta generata come JSON def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0): temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) output = "" for response in stream: output += response.token.text yield output return output