Spaces:
Sleeping
Sleeping
Commit
·
c550535
1
Parent(s):
33e9df8
Update main.py
Browse files
main.py
CHANGED
@@ -9,6 +9,7 @@ import requests
|
|
9 |
import os
|
10 |
import socket
|
11 |
|
|
|
12 |
app = FastAPI()
|
13 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
14 |
|
@@ -34,20 +35,7 @@ class InputImage(BaseModel):
|
|
34 |
cfg: int = 5
|
35 |
seed: int = 453666937
|
36 |
|
37 |
-
|
38 |
-
prompt = "<s>"
|
39 |
-
#with open('Manuale.txt', 'r') as file:
|
40 |
-
# manual_content = file.read()
|
41 |
-
# prompt += f"Leggi questo manuale dopo ti farò delle domande: {manual_content}"
|
42 |
-
|
43 |
-
for user_prompt, bot_response in history:
|
44 |
-
prompt += f"[INST] {user_prompt} [/INST]"
|
45 |
-
prompt += f" {bot_response}</s> "
|
46 |
-
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
|
47 |
-
prompt += f"[{now}] [INST] {message} [/INST]"
|
48 |
-
|
49 |
-
return prompt
|
50 |
-
|
51 |
@app.post("/Genera")
|
52 |
def read_root(request: Request, input_data: InputData):
|
53 |
input_text = input_data.input
|
@@ -55,40 +43,15 @@ def read_root(request: Request, input_data: InputData):
|
|
55 |
max_new_tokens = input_data.max_new_tokens
|
56 |
top_p = input_data.top_p
|
57 |
repetition_penalty = input_data.repetition_penalty
|
58 |
-
|
59 |
-
history = [] # Puoi definire la history se necessario
|
60 |
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
|
61 |
return {"response": generated_response}
|
62 |
|
63 |
-
@app.post("/Immagine")
|
64 |
-
def generate_image(request: Request, input_data: InputImage):
|
65 |
-
client = Client("https://openskyml-fast-sdxl-stable-diffusion-xl.hf.space/--replicas/545b5tw7n/")
|
66 |
-
result = client.predict(
|
67 |
-
input_data.input,
|
68 |
-
input_data.negativePrompt,
|
69 |
-
input_data.steps,
|
70 |
-
input_data.cfg,
|
71 |
-
1024,
|
72 |
-
1024,
|
73 |
-
input_data.seed,
|
74 |
-
fn_index=0
|
75 |
-
)
|
76 |
-
image_url = result
|
77 |
-
with open(image_url, 'rb') as img_file:
|
78 |
-
img_binary = img_file.read()
|
79 |
-
img_base64 = base64.b64encode(img_binary).decode('utf-8')
|
80 |
-
return {"response": img_base64}
|
81 |
-
|
82 |
-
@app.get("/")
|
83 |
-
def read_general():
|
84 |
-
return {"response": "Benvenuto. Per maggiori info vai a /docs"} # Restituisci la risposta generata come JSON
|
85 |
-
|
86 |
def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
|
87 |
temperature = float(temperature)
|
88 |
if temperature < 1e-2:
|
89 |
temperature = 1e-2
|
90 |
top_p = float(top_p)
|
91 |
-
|
92 |
generate_kwargs = dict(
|
93 |
temperature=temperature,
|
94 |
max_new_tokens=max_new_tokens,
|
@@ -100,10 +63,50 @@ def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95,
|
|
100 |
formatted_prompt = format_prompt(prompt, history)
|
101 |
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False)
|
102 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
#for response in stream:
|
108 |
-
# output_list.append(response.token.text)
|
109 |
-
#return iter(output_list) # Restituisci la lista come un iteratore
|
|
|
9 |
import os
|
10 |
import socket
|
11 |
|
12 |
+
#--------------------------------------------------- Definizione Server FAST API ------------------------------------------------------
|
13 |
app = FastAPI()
|
14 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
15 |
|
|
|
35 |
cfg: int = 5
|
36 |
seed: int = 453666937
|
37 |
|
38 |
+
#--------------------------------------------------- Generazione TESTO ------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
@app.post("/Genera")
|
40 |
def read_root(request: Request, input_data: InputData):
|
41 |
input_text = input_data.input
|
|
|
43 |
max_new_tokens = input_data.max_new_tokens
|
44 |
top_p = input_data.top_p
|
45 |
repetition_penalty = input_data.repetition_penalty
|
46 |
+
history = []
|
|
|
47 |
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
|
48 |
return {"response": generated_response}
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
|
51 |
temperature = float(temperature)
|
52 |
if temperature < 1e-2:
|
53 |
temperature = 1e-2
|
54 |
top_p = float(top_p)
|
|
|
55 |
generate_kwargs = dict(
|
56 |
temperature=temperature,
|
57 |
max_new_tokens=max_new_tokens,
|
|
|
63 |
formatted_prompt = format_prompt(prompt, history)
|
64 |
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False)
|
65 |
return output
|
66 |
+
|
67 |
+
def format_prompt(message, history):
|
68 |
+
prompt = "<s>"
|
69 |
+
for user_prompt, bot_response in history:
|
70 |
+
prompt += f"[INST] {user_prompt} [/INST]"
|
71 |
+
prompt += f" {bot_response}</s> "
|
72 |
+
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
|
73 |
+
prompt += f"[{now}] [INST] {message} [/INST]"
|
74 |
+
return prompt
|
75 |
+
|
76 |
+
#--------------------------------------------------- Generazione IMMAGINE ------------------------------------------------------
|
77 |
+
@app.post("/Immagine")
|
78 |
+
def generate_image(request: Request, input_data: InputImage):
|
79 |
+
client = Client("https://openskyml-fast-sdxl-stable-diffusion-xl.hf.space/--replicas/545b5tw7n/")
|
80 |
+
max_attempts = 10
|
81 |
+
attempt = 0
|
82 |
+
while attempt < max_attempts:
|
83 |
+
try:
|
84 |
+
result = client.predict(
|
85 |
+
input_data.input,
|
86 |
+
input_data.negativePrompt,
|
87 |
+
input_data.steps,
|
88 |
+
input_data.cfg,
|
89 |
+
1024,
|
90 |
+
1024,
|
91 |
+
input_data.seed,
|
92 |
+
fn_index=0
|
93 |
+
)
|
94 |
+
image_url = result
|
95 |
+
with open(image_url, 'rb') as img_file:
|
96 |
+
img_binary = img_file.read()
|
97 |
+
img_base64 = base64.b64encode(img_binary).decode('utf-8')
|
98 |
+
return {"response": img_base64}
|
99 |
+
except requests.exceptions.HTTPError as e:
|
100 |
+
if e.response.status_code == 500:
|
101 |
+
attempt += 1
|
102 |
+
if attempt < max_attempts:
|
103 |
+
continue
|
104 |
+
else:
|
105 |
+
return {"error": "Errore interno del server persistente"}
|
106 |
+
else:
|
107 |
+
return {"error": "Errore diverso da 500"}
|
108 |
+
return {"error": "Numero massimo di tentativi raggiunto"}
|
109 |
|
110 |
+
@app.get("/")
|
111 |
+
def read_general():
|
112 |
+
return {"response": "Benvenuto. Per maggiori info: https://matteoscript-fastapi.hf.space/docs"}
|
|
|
|
|
|