Spaces:
Running
Running
Commit
·
e506679
1
Parent(s):
cebfd3c
added support zephyr 7b
Browse files- __pycache__/mistral7b.cpython-310.pyc +0 -0
- app.py +18 -9
- mistral7b.py +6 -6
__pycache__/mistral7b.cpython-310.pyc
CHANGED
Binary files a/__pycache__/mistral7b.cpython-310.pyc and b/__pycache__/mistral7b.cpython-310.pyc differ
|
|
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import streamlit as st
|
2 |
-
from mistral7b import
|
3 |
import time
|
4 |
import pandas as pd
|
5 |
import pinecone
|
@@ -17,6 +17,11 @@ pinecone.init(
|
|
17 |
|
18 |
pinecone_index = pinecone.Index('ikigai-chat')
|
19 |
text_vectorizer = SentenceTransformer('all-distilroberta-v1')
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
def gen_augmented_prompt(prompt, top_k) :
|
22 |
query_vector = text_vectorizer.encode(prompt).tolist()
|
@@ -41,7 +46,7 @@ def gen_augmented_prompt(prompt, top_k) :
|
|
41 |
|
42 |
data = {
|
43 |
"Attribute": ["LLM", "Text Vectorizer", "Vector Database","CPU", "System RAM"],
|
44 |
-
"Information": ["Mistral-7B-Instruct-v0.1
|
45 |
}
|
46 |
df = pd.DataFrame(data)
|
47 |
|
@@ -82,18 +87,22 @@ if "history" not in st.session_state:
|
|
82 |
Let me know if you have any specific questions about Ikigai Labs or our products."""]]
|
83 |
|
84 |
if "top_k" not in st.session_state:
|
85 |
-
st.session_state.top_k =
|
86 |
|
87 |
if "repetion_penalty" not in st.session_state :
|
88 |
st.session_state.repetion_penalty = 1
|
89 |
|
90 |
if "rag_enabled" not in st.session_state :
|
91 |
st.session_state.rag_enabled = True
|
|
|
|
|
|
|
|
|
92 |
with st.sidebar:
|
93 |
st.markdown("# Retrieval Settings")
|
94 |
-
st.session_state.rag_enabled = st.toggle("Activate RAG")
|
95 |
st.session_state.top_k = st.slider(label="Documents to retrieve",
|
96 |
-
min_value=1, max_value=10, value=
|
97 |
st.markdown("---")
|
98 |
st.markdown("# Model Analytics")
|
99 |
|
@@ -107,8 +116,8 @@ with st.sidebar:
|
|
107 |
|
108 |
st.markdown("# Model Settings")
|
109 |
|
110 |
-
|
111 |
-
'Select one:', ["Mistral 7B","
|
112 |
st.session_state.temp = st.slider(
|
113 |
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
|
114 |
|
@@ -126,7 +135,7 @@ with st.sidebar:
|
|
126 |
|
127 |
st.image("ikigai.svg")
|
128 |
st.title("Ikigai Chat")
|
129 |
-
st.caption("Maintained and developed by Pragnesh Barik.")
|
130 |
|
131 |
with st.expander("What is Ikigai Chat ?"):
|
132 |
st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
|
@@ -153,7 +162,7 @@ if prompt := st.chat_input("Chat with Ikigai Docs..."):
|
|
153 |
prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
|
154 |
|
155 |
with st.spinner("Generating response...") :
|
156 |
-
response =
|
157 |
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
|
158 |
tock = time.time()
|
159 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from mistral7b import chat
|
3 |
import time
|
4 |
import pandas as pd
|
5 |
import pinecone
|
|
|
17 |
|
18 |
pinecone_index = pinecone.Index('ikigai-chat')
|
19 |
text_vectorizer = SentenceTransformer('all-distilroberta-v1')
|
20 |
+
chat_bots = {
|
21 |
+
"Mistral 7B" : "mistralai/Mistral-7B-Instruct-v0.1",
|
22 |
+
"Zephyr 7B" : "HuggingFaceH4/zephyr-7b-alpha",
|
23 |
+
}
|
24 |
+
|
25 |
|
26 |
def gen_augmented_prompt(prompt, top_k) :
|
27 |
query_vector = text_vectorizer.encode(prompt).tolist()
|
|
|
46 |
|
47 |
data = {
|
48 |
"Attribute": ["LLM", "Text Vectorizer", "Vector Database","CPU", "System RAM"],
|
49 |
+
"Information": ["Mistral-7B-Instruct-v0.1","all-distilroberta-v1", "Hosted Pinecone" ,"2 vCPU", "16 GB"]
|
50 |
}
|
51 |
df = pd.DataFrame(data)
|
52 |
|
|
|
87 |
Let me know if you have any specific questions about Ikigai Labs or our products."""]]
|
88 |
|
89 |
if "top_k" not in st.session_state:
|
90 |
+
st.session_state.top_k = 4
|
91 |
|
92 |
if "repetion_penalty" not in st.session_state :
|
93 |
st.session_state.repetion_penalty = 1
|
94 |
|
95 |
if "rag_enabled" not in st.session_state :
|
96 |
st.session_state.rag_enabled = True
|
97 |
+
|
98 |
+
if "chat_bot" not in st.session_state :
|
99 |
+
st.session_state.chat_bot = "Mistral 7B"
|
100 |
+
|
101 |
with st.sidebar:
|
102 |
st.markdown("# Retrieval Settings")
|
103 |
+
st.session_state.rag_enabled = st.toggle("Activate RAG", value=True)
|
104 |
st.session_state.top_k = st.slider(label="Documents to retrieve",
|
105 |
+
min_value=1, max_value=10, value=4, disabled=not st.session_state.rag_enabled)
|
106 |
st.markdown("---")
|
107 |
st.markdown("# Model Analytics")
|
108 |
|
|
|
116 |
|
117 |
st.markdown("# Model Settings")
|
118 |
|
119 |
+
st.session_state.chat_bot = st.sidebar.radio(
|
120 |
+
'Select one:', ["Mistral 7B","Zephyr 7B"])
|
121 |
st.session_state.temp = st.slider(
|
122 |
label="Temperature", min_value=0.0, max_value=1.0, step=0.1, value=0.9)
|
123 |
|
|
|
135 |
|
136 |
st.image("ikigai.svg")
|
137 |
st.title("Ikigai Chat")
|
138 |
+
# st.caption("Maintained and developed by Pragnesh Barik.")
|
139 |
|
140 |
with st.expander("What is Ikigai Chat ?"):
|
141 |
st.info("""Ikigai Chat is a vector database powered chat agent, it works on the principle of
|
|
|
162 |
prompt, links = gen_augmented_prompt(prompt=prompt, top_k=st.session_state.top_k)
|
163 |
|
164 |
with st.spinner("Generating response...") :
|
165 |
+
response = chat(prompt, st.session_state.history,chat_client=chat_bots[st.session_state.chat_bot] ,
|
166 |
temperature=st.session_state.temp, max_new_tokens=st.session_state.max_tokens)
|
167 |
tock = time.time()
|
168 |
|
mistral7b.py
CHANGED
@@ -4,10 +4,6 @@ from dotenv import load_dotenv
|
|
4 |
load_dotenv()
|
5 |
|
6 |
API_TOKEN = os.getenv('HF_TOKEN')
|
7 |
-
client = InferenceClient(
|
8 |
-
"mistralai/Mistral-7B-Instruct-v0.1",
|
9 |
-
token=API_TOKEN
|
10 |
-
)
|
11 |
|
12 |
|
13 |
def format_prompt(message, history):
|
@@ -18,9 +14,13 @@ def format_prompt(message, history):
|
|
18 |
prompt += f"[INST] {message} [/INST]"
|
19 |
return prompt
|
20 |
|
21 |
-
def
|
22 |
-
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
23 |
):
|
|
|
|
|
|
|
|
|
24 |
temperature = float(temperature)
|
25 |
if temperature < 1e-2:
|
26 |
temperature = 1e-2
|
|
|
4 |
load_dotenv()
|
5 |
|
6 |
API_TOKEN = os.getenv('HF_TOKEN')
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def format_prompt(message, history):
|
|
|
14 |
prompt += f"[INST] {message} [/INST]"
|
15 |
return prompt
|
16 |
|
17 |
+
def chat(
|
18 |
+
prompt, history, chat_client = "mistralai/Mistral-7B-Instruct-v0.1",temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
|
19 |
):
|
20 |
+
client = InferenceClient(
|
21 |
+
chat_client,
|
22 |
+
token=API_TOKEN
|
23 |
+
)
|
24 |
temperature = float(temperature)
|
25 |
if temperature < 1e-2:
|
26 |
temperature = 1e-2
|