Spaces:
Sleeping
Sleeping
File size: 2,655 Bytes
738953f af105a4 738953f c3a7c1e af105a4 f83c8d7 af105a4 5433a48 af105a4 94d331f 6b0c2cb 94d331f 6b0c2cb af105a4 f83c8d7 928b239 f83c8d7 bd7f600 f83c8d7 aae5551 f511f07 a06c8f9 0e6616c a93d05b 7744e2a f83c8d7 de79f12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
from huggingface_hub import InferenceClient
import gradio as gr
import requests
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
manual_url = "https://script.google.com/macros/s/AKfycbzlFFMNw0Zc7IKt4Sn7KB5qggPMlh_2mdMn5uOjw93MF2L-58SPb4ZPUQKHJppLSLBi/exec"
manual_content = None
def get_manual_content():
global manual_content
response = requests.get(manual_url)
if response.status_code == 200:
manual_content = response.text
def format_prompt(message, history):
global manual_content
if manual_content is None or not history or not any(user_prompt for user_prompt, _ in history):
get_manual_content()
prompt = "<s>"
if manual_content:
prompt += f"[INST]Leggi questo MANUALE dopo ti farò delle domande: [/INST] {manual_content}"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST]Tu sei Zucchetti AI, il mio assistente personale di AdHoc e... io ho un problema in AdHoc, rispondi proponendo SOLO con soluzione relativa al problema a partire dal manuale: {message} [/INST]"
return prompt
def generate(
prompt, history, temperature=0.2, max_new_tokens=300, top_p=0.95, repetition_penalty=1.0,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
mychatbot = gr.Chatbot(
avatar_images=["./user.png", "./LogoAHR.jpg"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,value=[[None, "Ciao sono Zucchetti AI il tuo assistente personale per AdHoc Revolution…"]], )
demo = gr.ChatInterface(fn=generate,
chatbot=mychatbot,
title="Zucchetti AI",
textbox=gr.Textbox(placeholder="Descrivi il tuo problema..."),
theme="gradio/base",
submit_btn="Invia",
retry_btn=None,
undo_btn=None,
clear_btn="Cancella"
)
demo.queue().launch(show_api=True, share=True) |