Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| from huggingface_hub import InferenceClient | |
| app = FastAPI() | |
| client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def read_root(): | |
| user_input = "Come Stai?" # Puoi passare l'input desiderato da qui | |
| history = [] # Puoi definire la history se necessario | |
| generated_response = next(generate(user_input, history)) # Ottieni la risposta generata | |
| return {"response": generated_response} # Restituisci la risposta generata come JSON | |
| def generate(prompt, history, temperature=0.2, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0): | |
| temperature = float(temperature) | |
| if temperature < 1e-2: | |
| temperature = 1e-2 | |
| top_p = float(top_p) | |
| generate_kwargs = dict( | |
| temperature=temperature, | |
| max_new_tokens=max_new_tokens, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| do_sample=True, | |
| seed=42, | |
| ) | |
| formatted_prompt = format_prompt(prompt, history) | |
| stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| output = "" | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| return output | |