File size: 21,768 Bytes
002fca8
2cd7197
9e3ea07
c53513a
d707be1
2589dc0
dadb627
 
0099d95
c5f58d3
f0feabf
d57ded5
498d80c
1ad1813
 
f46a54e
d707be1
c550535
b916cdf
c53513a
 
2cd7197
 
 
 
 
 
 
 
9e3ea07
0a9fba8
48711f9
 
 
0597872
9a48a48
a81da59
 
edfd1c7
1ad1813
b2f2237
efdbc4b
e112e01
c4ffce6
77d78c0
 
edfd92b
1ad1813
0bb76a8
6159237
 
 
77d78c0
89622e2
 
 
 
 
 
1ad1813
c550535
a81da59
1b97fe5
edfd1c7
77d78c0
 
 
 
 
89622e2
77d78c0
 
 
2997fee
77d78c0
 
edfd1c7
59942b6
 
 
 
77d78c0
2997fee
6e87d2e
 
c4ffce6
 
 
77d78c0
 
1b97fe5
4e47f5d
 
 
 
 
 
 
c550535
1b97fe5
4e47f5d
 
 
 
 
 
48711f9
4e47f5d
 
 
2e37b0e
4e47f5d
 
 
 
 
 
 
 
 
 
1b97fe5
c53513a
49dd983
c53513a
 
 
 
 
 
 
 
 
 
396921a
c53513a
 
609a4fb
ca7a52b
c550535
 
 
 
 
 
 
 
 
1ad1813
 
 
1b97fe5
0597872
1ad1813
 
f8ee6ca
 
 
 
 
 
 
 
 
 
 
 
89622e2
f8ee6ca
 
77d78c0
f8ee6ca
 
 
 
 
 
11c5c73
 
 
 
 
 
 
 
 
da5a2bc
11c5c73
da5a2bc
11c5c73
efdbc4b
11c5c73
efdbc4b
11c5c73
efdbc4b
0462cdd
11c5c73
bfa725d
11c5c73
2c13b0b
 
 
 
11c5c73
 
efdbc4b
 
0d41911
11c5c73
 
 
9767fdc
9103c13
 
11c5c73
9103c13
11c5c73
 
 
 
 
 
efdbc4b
46ae9ab
efdbc4b
 
 
 
0e1eeff
efdbc4b
 
 
 
 
 
 
 
 
11c5c73
efdbc4b
 
 
 
11c5c73
 
9767fdc
11c5c73
9767fdc
 
11c5c73
 
 
 
 
46ae9ab
efdbc4b
 
b2f2237
 
0e1eeff
b2f2237
 
 
13e18f4
 
efdbc4b
b2f2237
efdbc4b
 
 
 
 
 
 
25de09d
efdbc4b
77d78c0
49dd983
1ad1813
25de09d
 
c550535
d57ded5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b134cae
be4a7bb
 
d57ded5
 
c550535
 
1501a26
a9fa60b
d57ded5
a9fa60b
498d80c
 
 
 
 
 
d57ded5
 
 
ad9c967
c550535
 
 
1e200c7
ad9c967
 
 
 
 
 
 
 
 
 
 
 
 
1501a26
8bcfd35
586a47b
c550535
 
 
 
 
31c3ad2
 
 
 
c550535
31c3ad2
c550535
c53513a
0bb76a8
 
 
347ae61
6159237
 
 
 
 
0bb76a8
6159237
c550535
7a4300a
ad9c967
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware  # Importa il middleware CORS
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from datetime import datetime
from gradio_client import Client
import base64
import requests
import os
import socket
import time
from enum import Enum
import random
import aiohttp
import asyncio
import json 

#--------------------------------------------------- Definizione Server FAST API ------------------------------------------------------
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class InputData(BaseModel):
    input: str
    systemRole: str = '' 
    systemStyle: str = ''
    instruction: str = ''
    temperature: float = 0.7
    max_new_tokens: int = 2000
    top_p: float = 0.95
    repetition_penalty: float = 1.0
    asincrono: bool = False
    NumeroGenerazioni: int = 1
    StringaSplit: str = '********'
    NumeroCaratteriSplitInstruction: int = 30000
    EliminaRisposteNonPertinenti: bool = False
    UnificaRispostaPertinente: bool = False

class InputDataAsync(InputData):
    test: str = ''
    
class PostSpazio(BaseModel):
    nomeSpazio: str
    input: str = '' 
    api_name: str = "/chat"

def LoggaTesto(log_type, data, serializza=True):
    if serializza:
        formatted_data = json.dumps(data, indent=2)
    else:    
        formatted_data = data
    print(f"\n{datetime.now()}: ---------------------------------------------------------------| {log_type} |--------------------------------------------------------------\n{formatted_data}")
    
#--------------------------------------------------- Generazione TESTO ------------------------------------------------------
@app.post("/Genera")
def generate_text(request: Request, input_data: InputData):
    if not input_data.asincrono: 
        temperature = input_data.temperature
        max_new_tokens = input_data.max_new_tokens
        top_p = input_data.top_p
        repetition_penalty = input_data.repetition_penalty
        input_text = generate_input_text(input_data)  
        LoggaTesto("RICHIESTA SINCRONA", input_text, False)
        max_new_tokens = min(max_new_tokens, 29500 - len(input_text))
        history = []
        generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
        LoggaTesto("RISPOSTA SINCRONA", {"response": generated_response})
        return {"response": generated_response}
    else: 
        input_data.asincrono = False
        if input_data.EliminaRisposteNonPertinenti:
            msgEliminaRisposteNonPertinenti = " (Rispondi solo sulla base delle ISTRUZIONI che hai ricevuto. se non trovi corrispondenza tra RICHIESTA e ISTRUZIONI rispondi con <NOTFOUND>!!!)"
            input_data.input = input_data.input + msgEliminaRisposteNonPertinenti
            input_data.systemRole = input_data.systemRole + msgEliminaRisposteNonPertinenti
        result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", input_data))
        LoggaTesto("RISPOSTA ASINCRONA FINALE", {"response": result_data})
        if input_data.EliminaRisposteNonPertinenti:
            result_data = [item for item in result_data if "NOTFOUND" not in item["response"]]
        if input_data.UnificaRispostaPertinente:
            input_data.instruction = f'''{result_data}'''
            result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", input_data))
        return {"response": result_data}
    
def generate_input_text(input_data):
    if input_data.instruction.startswith("http"):
        try:
            resp = requests.get(input_data.instruction)
            resp.raise_for_status()  # Lancia un'eccezione per errori HTTP
            input_data.instruction = resp.text
        except requests.exceptions.RequestException as e:
            input_data.instruction = ""
    history = [] 
    if input_data.systemRole != "" or input_data.systemStyle != "" or input_data.instruction != "":
        input_text = f'''
        {{
            "input": {{
                "role": "system",
                "content": "{input_data.systemRole}", 
                "style": "{input_data.systemStyle}"
            }},
            "messages": [
                {{
                    "role": "instructions",
                    "content": "{input_data.instruction} "("{input_data.systemStyle}")"
                }},
                {{
                    "role": "user",
                    "content": "{input_data.input}"
                }}
            ]
        }}
        '''
    else:
        input_text = input_data.input   
    return input_text

def generate(prompt, history, temperature=0.7, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=random.randint(0, 10**7),
    )
    formatted_prompt = format_prompt(prompt, history)
    output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False)
    return output
    
def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
    prompt += f"[{now}] [INST] {message} [/INST]"
    return prompt

#--------------------------------------------------- Generazione TESTO ASYNC ------------------------------------------------------
@app.post("/GeneraAsync")
def generate_textAsync(request: Request, input_data: InputDataAsync):
    result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", input_data))
    return {"response": result_data}

async def make_request(session, token, data, url, max_retries=3):
    headers = {
        'Content-Type': 'application/json',
        'Authorization': 'Bearer ' + token
    }
    for _ in range(max_retries):
        try:
            async with session.post(url, headers=headers, json=data) as response:
                response.raise_for_status()
                try:
                    result_data = await response.json()
                except aiohttp.ContentTypeError:
                    result_data = await response.text()                
                return result_data
        except (asyncio.TimeoutError, aiohttp.ClientError, requests.exceptions.HTTPError) as e:
            LoggaTesto("ERRORE ASYNC", {e})
            if isinstance(e, (asyncio.TimeoutError, requests.exceptions.HTTPError)) and e.response.status in [502, 504]:
                break

            await asyncio.sleep(1)  
    raise Exception("Max retries reached or skipping retries. Unable to make the request.")

async def CreaListaInput(input_data):
    if input_data.instruction.startswith("http"):
        try:
            resp = requests.get(input_data.instruction)
            resp.raise_for_status()
            input_data.instruction = resp.text
        except requests.exceptions.RequestException as e:
            input_data.instruction = ""
    try:
        lista_dizionari = []
        nuova_lista_dizionari = []
        lista_dizionari = json.loads(input_data.instruction)
        if lista_dizionari and "Titolo" in lista_dizionari[0]:
            nuova_lista_dizionari = DividiInstructionJSON(lista_dizionari, input_data)
        else:
            nuova_lista_dizionari = DividiInstructionText(input_data)
    except json.JSONDecodeError:
        nuova_lista_dizionari = DividiInstructionText(input_data)
    return nuova_lista_dizionari

def split_at_space_or_dot(input_string, length):
    delimiters = ['\n\n', '.\n', ';\n', '.', ' ']
    positions = [input_string.rfind(d, 0, length) for d in delimiters]
    valid_positions = [pos for pos in positions if pos >= 0]
    lastpos = max(valid_positions) if valid_positions else length
    indice_divisione = int(lastpos)
    return indice_divisione + 1

def DividiInstructionJSON(lista_dizionari, input_data):
    ListaInput = []
    nuova_lista_dizionari = []
    for dizionario in lista_dizionari:
        titolo = dizionario["Titolo"]
        testo_completo = dizionario["Testo"]
        while len(testo_completo) > input_data.NumeroCaratteriSplitInstruction:
            indice_divisione = split_at_space_or_dot(testo_completo, input_data.NumeroCaratteriSplitInstruction)
            indice_divisione_precedente = split_at_space_or_dot(testo_completo, input_data.NumeroCaratteriSplitInstruction-100)
            sottostringa = testo_completo[:indice_divisione].strip()
            testo_completo = testo_completo[indice_divisione_precedente:].strip()
            nuovo_dizionario = {"Titolo": titolo, "Testo": sottostringa}
            nuova_lista_dizionari.append(nuovo_dizionario)

        if len(testo_completo) > 0:
            nuovo_dizionario = {"Titolo": titolo, "Testo": testo_completo}
            nuova_lista_dizionari.append(nuovo_dizionario)

    input_strings = input_data.input.split(input_data.StringaSplit)
    for input_string in input_strings:
        for dizionario in nuova_lista_dizionari:
            data = {
                'input': input_string,
                'instruction': str(dizionario),
                'temperature': input_data.temperature,
                'max_new_tokens': input_data.max_new_tokens,
                'top_p': input_data.top_p,
                'repetition_penalty': input_data.repetition_penalty,
                'systemRole': input_data.systemRole,
                'systemStyle': input_data.systemStyle
            }
            ListaInput.append(data)
    return ListaInput

def DividiInstructionText(input_data): 
    ListaInput = []
    input_str = input_data.instruction
    StringaSplit = input_data.StringaSplit
    sottostringhe = []
    indice_inizio = 0
    if len(input_str) > input_data.NumeroCaratteriSplitInstruction:
        while indice_inizio < len(input_str):
            lunghezza_sottostringa = split_at_space_or_dot(input_str[indice_inizio:], input_data.NumeroCaratteriSplitInstruction)
            sottostringhe.append(input_str[indice_inizio:indice_inizio + lunghezza_sottostringa].strip())
            indice_inizio += lunghezza_sottostringa
    else:
        sottostringhe.append(input_str)
    testoSeparato = StringaSplit.join(sottostringhe)
    instruction_strings = testoSeparato.split(StringaSplit)
    input_strings = input_data.input.split(input_data.StringaSplit)
    for input_string in input_strings:
        for instruction_string in instruction_strings:
            data = {
                'input': input_string.strip(),
                'instruction': str([instruction_string.strip()]), 
                'temperature': input_data.temperature,
                'max_new_tokens': input_data.max_new_tokens,
                'top_p': input_data.top_p,
                'repetition_penalty': input_data.repetition_penalty,
                'systemRole': input_data.systemRole,
                'systemStyle': input_data.systemStyle                
            }
            ListaInput.append(data)
    return ListaInput

async def GeneraTestoAsync(url, input_data):
    token = os.getenv('TOKEN')
    async with aiohttp.ClientSession() as session:
        tasks = []
        ListaInput = await CreaListaInput(input_data)
        for data in ListaInput:
            LoggaTesto("RICHIESTA ASINCRONA", data)
            tasks.extend([make_request(session, token, data, url) for _ in range(input_data.NumeroGenerazioni)])
        return await asyncio.gather(*tasks)

        
#--------------------------------------------------- Generazione IMMAGINE ------------------------------------------------------
style_image = {
    "PROFESSIONAL-PHOTO": {
        "descrizione": "Professional photo {prompt} . Vivid colors, Mirrorless, 35mm lens, f/1.8 aperture, ISO 100, natural daylight",
        "negativePrompt": "out of frame, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
    },
    "CINEMATIC-PHOTO": {
        "descrizione": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negativePrompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
    },
    "CINEMATIC-PORTRAIT": {
        "descrizione": "cinematic portrait {prompt} 8k, ultra realistic, good vibes, vibrant",
        "negativePrompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
    },
    "LINE-ART-DRAWING": {
        "descrizione": "line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
        "negativePrompt": "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic"
    },
    "COMIC": {
        "descrizione": "comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed",
        "negativePrompt": "photograph, deformed, glitch, noisy, realistic, stock photo"
    },
    "ADVERTISING-POSTER-STYLE": {
        "descrizione": "advertising poster style {prompt} . Professional, modern, product-focused, commercial, eye-catching, highly detailed",
        "negativePrompt": "noisy, blurry, amateurish, sloppy, unattractive"
    },
    "RETAIL-PACKAGING-STYLE": {
        "descrizione": "retail packaging style {prompt} . vibrant, enticing, commercial, product-focused, eye-catching, professional, highly detailed",
        "negativePrompt": "noisy, blurry, amateurish, sloppy, unattractive"
    },
    "GRAFFITI-STYLE": {
        "descrizione": "graffiti style {prompt} . street art, vibrant, urban, detailed, tag, mural",
        "negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic"
    },
    "POP-ART-STYLE": {
        "descrizione": "pop Art style {prompt} . bright colors, bold outlines, popular culture themes, ironic or kitsch",
        "negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, minimalist"
    },
    "ISOMETRIC-STYLE": {
        "descrizione": "isometric style {prompt} . vibrant, beautiful, crisp, detailed, ultra detailed, intricate",
        "negativePrompt": "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy, realistic, photographic"
    },
    "LOW-POLY-STYLE": {
        "descrizione": "low-poly style {prompt}. ambient occlusion, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
        "negativePrompt": "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
    },
    "CLAYMATION-STYLE": {
        "descrizione": "claymation style {prompt} . sculpture, clay art, centered composition, play-doh",
        "negativePrompt": ""
    },
    "PROFESSIONAL-3D-MODEL": {
        "descrizione": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negativePrompt": "ugly, deformed, noisy, low poly, blurry, painting"
    },
    "ANIME-ARTWORK": {
        "descrizione": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
        "negativePrompt": "photo, deformed, black and white, realism, disfigured, low contrast"
    },
    "ETHEREAL-FANTASY-CONCEPT-ART": {
        "descrizione": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negativePrompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"
    },
    "CYBERNETIC-STYLE": {
        "descrizione": "cybernetic style {prompt} . futuristic, technological, cybernetic enhancements, robotics, artificial intelligence themes",
        "negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, historical, medieval"
    },
    "FUTURISTIC-STYLE": {
        "descrizione": "futuristic style {prompt} . sleek, modern, ultramodern, high tech, detailed",
        "negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vintage, antique"
    },
    "SCI-FI-STYLE": {
        "descrizione": "sci-fi style {prompt} . futuristic, technological, alien worlds, space themes, advanced civilizations",
        "negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, historical, medieval"
    },
    "DIGITAL-ART": {
        "descrizione": "Digital Art {prompt} . vibrant, cute, digital, handmade",
        "negativePrompt": ""
    },
    "SIMPLE-LOGO": {
        "descrizione": "Minimalist Logo {prompt} . material design, primary colors, stylized, minimalist",
        "negativePrompt": "3D, high detail, noise, grainy, blurry, painting, drawing, photo, disfigured"
    },
    "MINIMALISTIC-LOGO": {
        "descrizione": "Ultra-minimalist Material Design logo for a BRAND: {prompt} . simple, few colors, clean lines, minimal details, modern color palette, no shadows",
        "negativePrompt": "3D, high detail, noise, grainy, blurry, painting, drawing, photo, disfigured"
    }
}

class InputImage(BaseModel):
    input: str
    negativePrompt: str = '' 
    style: str = ''
    steps: int = 25
    cfg: int = 6
    seed: int = -1

@app.post("/Immagine")
def generate_image(request: Request, input_data: InputImage):
    client = Client("https://manjushri-sdxl-1-0.hf.space/")
    
    if input_data.style:    
        print(input_data.style)
        if input_data.style == 'RANDOM':
            random_style = random.choice(list(style_image.keys()))
            style_info = style_image[random_style]
            input_data.input = style_info["descrizione"].format(prompt=input_data.input)
            input_data.negativePrompt = style_info["negativePrompt"]           
        elif input_data.style in style_image:
            style_info = style_image[input_data.style]
            input_data.input = style_info["descrizione"].format(prompt=input_data.input)
            input_data.negativePrompt = style_info["negativePrompt"]
    max_attempts = 2
    attempt = 0
    while attempt < max_attempts:
        try:
            result = client.predict(
               input_data.input,	# str  in 'What you want the AI to generate. 77 Token Limit. A Token is Any Word, Number, Symbol, or Punctuation. Everything Over 77 Will Be Truncated!' Textbox component
               input_data.negativePrompt,	# str  in 'What you Do Not want the AI to generate. 77 Token Limit' Textbox component
               1024,	# int | float (numeric value between 512 and 1024) in 'Height' Slider component
               1024,	# int | float (numeric value between 512 and 1024) in 'Width' Slider component
               input_data.cfg,	# int | float (numeric value between 1 and 15) in 'Guidance Scale: How Closely the AI follows the Prompt' Slider component
               input_data.steps,	# int | float (numeric value between 25 and 100) in 'Number of Iterations' Slider component
               0,	# int | float (numeric value between 0 and 999999999999999999) in 'Seed: 0 is Random' Slider component
               "Yes",	# str  in 'Upscale?' Radio component
               "",	# str  in 'Embedded Prompt' Textbox component
               "",	# str  in 'Embedded Negative Prompt' Textbox component
               0.99,	# int | float (numeric value between 0.7 and 0.99) in 'Refiner Denoise Start %' Slider component
               100,	# int | float (numeric value between 1 and 100) in 'Refiner Number of Iterations %' Slider component
               api_name="/predict"
            ) 
            image_url = result[0]
            print(image_url)
            with open(image_url, 'rb') as img_file:
                img_binary = img_file.read()
                img_base64 = base64.b64encode(img_binary).decode('utf-8')
            return {"response": img_base64}
        except requests.exceptions.HTTPError as e:
            time.sleep(1)
            attempt += 1
            if attempt < max_attempts:
                continue
            else:
                return {"error": "Errore interno del server persistente"}
    return {"error": "Numero massimo di tentativi raggiunto"}

    
#--------------------------------------------------- API PostSpazio ------------------------------------------------------
@app.post("/PostSpazio")
def generate_postspazio(request: Request, input_data: PostSpazio):
    client = Client(input_data.nomeSpazio)
    result = client.predict(
    		input_data.input,	
    		api_name=input_data.api_name
    )
    return {"response": result}

@app.get("/")
def read_general(): 
    return {"response": "Benvenuto. Per maggiori info: https://matteoscript-fastapi.hf.space/docs"}