Spaces:
Sleeping
Sleeping
File size: 26,392 Bytes
002fca8 2cd7197 9e3ea07 c53513a d707be1 2589dc0 dadb627 0099d95 c5f58d3 f0feabf d57ded5 498d80c 1ad1813 739823d 5bb98a2 d707be1 c550535 b916cdf c53513a 2cd7197 9e3ea07 0a9fba8 48711f9 0597872 9a48a48 a81da59 edfd1c7 1ad1813 b2f2237 efdbc4b e112e01 c4ffce6 a0fbf6c 77d78c0 edfd92b 1ad1813 0bb76a8 6159237 77d78c0 89622e2 1ad1813 c550535 a81da59 e638340 edfd1c7 de1ac5e 77d78c0 2e122bc 1547f88 028241d 77d78c0 edfd1c7 59942b6 77d78c0 a25898e a358ea0 6e87d2e c4ffce6 2064031 f23c295 c4ffce6 a25898e a358ea0 028241d a0fbf6c 1547f88 a0fbf6c 714597f a0fbf6c 2e122bc a0fbf6c 1547f88 efc9aab b5d7c98 1b97fe5 4e47f5d c550535 1b97fe5 4e47f5d 48711f9 4e47f5d 2e37b0e 4e47f5d 1b97fe5 c53513a 49dd983 c53513a 396921a c53513a 609a4fb ca7a52b c550535 1ad1813 1b97fe5 0597872 1ad1813 7ead637 163745b 7ead637 83ed783 7ead637 7718a42 7ead637 83ed783 7ead637 f8ee6ca 11c5c73 da5a2bc 11c5c73 da5a2bc 11c5c73 efdbc4b 11c5c73 efdbc4b 11c5c73 efdbc4b 0462cdd 11c5c73 bfa725d 11c5c73 2c13b0b 11c5c73 efdbc4b 0d41911 11c5c73 9767fdc 9103c13 11c5c73 9103c13 11c5c73 efdbc4b 46ae9ab 2355ce2 1b41c98 2355ce2 efdbc4b 11c5c73 efdbc4b 11c5c73 9767fdc 11c5c73 9767fdc 11c5c73 46ae9ab 2355ce2 1b41c98 2355ce2 efdbc4b 7ead637 efdbc4b 25de09d efdbc4b 77d78c0 ab30281 6a762d0 1ad1813 25de09d 739823d 527b418 c550535 d57ded5 b134cae be4a7bb d57ded5 8547e87 d57ded5 c550535 96ad53d 8547e87 d57ded5 a9fa60b 498d80c d57ded5 96ad53d c550535 26d2c1d c324e61 186367a 8547e87 32aa507 8547e87 32aa507 8547e87 32aa507 8547e87 800d2a0 586a47b c550535 31c3ad2 c550535 ca63b28 c550535 c53513a 5bb98a2 0007a1d 5bb98a2 00dd371 5bb98a2 1290705 5322bcf ce2abd9 5bb98a2 0bb76a8 347ae61 6159237 0bb76a8 6159237 c550535 7a4300a ad9c967 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
from fastapi import FastAPI, Request
from fastapi.middleware.cors import CORSMiddleware # Importa il middleware CORS
from pydantic import BaseModel
from huggingface_hub import InferenceClient
from datetime import datetime
from gradio_client import Client
import base64
import requests
import os
import socket
import time
from enum import Enum
import random
import aiohttp
import asyncio
import json
from types import SimpleNamespace
from io import BytesIO
from PIL import Image
#--------------------------------------------------- Definizione Server FAST API ------------------------------------------------------
app = FastAPI()
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class InputData(BaseModel):
input: str
systemRole: str = ''
systemStyle: str = ''
instruction: str = ''
temperature: float = 0.7
max_new_tokens: int = 2000
top_p: float = 0.95
repetition_penalty: float = 1.0
asincrono: bool = False
NumeroGenerazioni: int = 1
StringaSplit: str = '********'
NumeroCaratteriSplitInstruction: int = 30000
EliminaRisposteNonPertinenti: bool = False
UnificaRispostaPertinente: bool = False
telegramChatId: str = ''
telegramUrlBot: str = ''
telegramUrlPost: str = ''
class InputDataAsync(InputData):
test: str = ''
class PostSpazio(BaseModel):
nomeSpazio: str
input: str = ''
api_name: str = "/chat"
def LoggaTesto(log_type, data, serializza=True):
if serializza:
formatted_data = json.dumps(data, indent=2)
else:
formatted_data = data
print(f"\n{datetime.now()}: ---------------------------------------------------------------| {log_type} |--------------------------------------------------------------\n{formatted_data}")
#--------------------------------------------------- Generazione TESTO ------------------------------------------------------
@app.post("/Genera")
def generate_text(request: Request, input_data: InputData):
if not input_data.asincrono:
LoggaTesto("INPUT", input_data.input, False)
temperature = input_data.temperature
max_new_tokens = input_data.max_new_tokens
top_p = input_data.top_p
repetition_penalty = input_data.repetition_penalty
input_text = generate_input_text(input_data)
max_new_tokens = min(max_new_tokens, 29500 - len(input_text))
history = []
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
if input_data.telegramChatId != '' and input_data.telegramUrlBot != '' and input_data.telegramUrlPost != '':
asyncio.run(call_telegram_api(input_data, generated_response))
LoggaTesto("RISPOSTA", {"response": generated_response}, False)
return {"response": generated_response}
#return json.dumps({"response": generated_response})
else:
input_data.asincrono = False
if input_data.EliminaRisposteNonPertinenti:
msgEliminaRisposteNonPertinenti = " (Rispondi solo sulla base delle ISTRUZIONI che hai ricevuto. se non trovi corrispondenza tra RICHIESTA e ISTRUZIONI rispondi con <NOTFOUND>!!!)"
input_data.input = input_data.input + msgEliminaRisposteNonPertinenti
input_data.systemRole = input_data.systemRole + msgEliminaRisposteNonPertinenti
result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", input_data))
#result_data = result_data.replace('"', '')
LoggaTesto("RISPOSTA ASINCRONA", {"response": result_data})
if input_data.EliminaRisposteNonPertinenti:
result_data = [item for item in result_data if "NOTFOUND" not in item["response"]]
if input_data.UnificaRispostaPertinente:
input_data.input= f'''Metti insieme le seguenti risposte. Basati solo su questo TESTO e non AGGIUNGERE ALTRO!!!!: {result_data}'''
input_data.systemRole = ''
input_data.systemStyle = 'Rispondi in ITALIANO'
input_data.instruction =''
result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", input_data))
#result_data = result_data.replace('"', '')
LoggaTesto("RISPOSTA ASINCRONA UNIFICATA", {"response": result_data})
return {"response": result_data}
#return json.dumps({"response": result_data})
def call_telegram_api_OLD(input_data, text):
payload = {
"chat_id": input_data.telegramChatId,
"text": text,
"telegramUrl": input_data.telegramUrlBot
}
response = requests.post(input_data.telegramUrlPost, json=payload)
if response.status_code == 200:
print("Invio messaggio TELEGRAM")
else:
print("Errore nella richiesta POST. Codice di stato:", response.status_code)
async def call_telegram_api(input_data, text):
payload = {
"chat_id": input_data.telegramChatId,
"text": text,
"telegramUrl": input_data.telegramUrlBot
}
async with aiohttp.ClientSession() as session:
async with session.post(input_data.telegramUrlPost, json=payload) as response:
response_text = await response.text()
def generate_input_text(input_data):
if input_data.instruction.startswith("http"):
try:
resp = requests.get(input_data.instruction)
resp.raise_for_status() # Lancia un'eccezione per errori HTTP
input_data.instruction = resp.text
except requests.exceptions.RequestException as e:
input_data.instruction = ""
history = []
if input_data.systemRole != "" or input_data.systemStyle != "" or input_data.instruction != "":
input_text = f'''
{{
"input": {{
"role": "system",
"content": "{input_data.systemRole}",
"style": "{input_data.systemStyle}"
}},
"messages": [
{{
"role": "instructions",
"content": "{input_data.instruction} "("{input_data.systemStyle}")"
}},
{{
"role": "user",
"content": "{input_data.input}"
}}
]
}}
'''
else:
input_text = input_data.input
return input_text
def generate(prompt, history, temperature=0.7, max_new_tokens=30000, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=random.randint(0, 10**7),
)
formatted_prompt = format_prompt(prompt, history)
output = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False)
return output
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f")
prompt += f"[{now}] [INST] {message} [/INST]"
return prompt
#--------------------------------------------------- Generazione TESTO ASYNC ------------------------------------------------------
@app.post("/GeneraAsync")
def generate_textAsync(request: Request, input_data: InputDataAsync):
result_data = asyncio.run(GeneraTestoAsync("https://matteoscript-fastapi.hf.space/Genera", input_data))
return {"response": result_data}
async def make_request(session, token, data, url, index, semaphore, max_retries=3):
async with semaphore:
headers = {
'Content-Type': 'application/json',
'Authorization': 'Bearer ' + token
}
if (int(index)+1) % 3 == 1:
data['max_new_tokens'] = data['max_new_tokens']
elif (int(index)+1) % 3 == 2:
data['max_new_tokens'] = max(200, data['max_new_tokens'] - 200)
else:
data['max_new_tokens'] = data['max_new_tokens'] + 200
for _ in range(max_retries):
try:
async with session.post(url, headers=headers, json=data) as response:
response.raise_for_status()
try:
result_data = await response.json()
except aiohttp.ContentTypeError:
result_data = await response.text()
return result_data
except (asyncio.TimeoutError, aiohttp.ClientError, requests.exceptions.HTTPError) as e:
LoggaTesto("ERRORE ASYNC", {e}, False)
if isinstance(e, (asyncio.TimeoutError, requests.exceptions.HTTPError)) and e.response.status in [502, 504]:
break
await asyncio.sleep(3)
raise Exception("Max retries reached or skipping retries. Unable to make the request.")
async def CreaListaInput(input_data):
if input_data.instruction.startswith("http"):
try:
resp = requests.get(input_data.instruction)
resp.raise_for_status()
input_data.instruction = resp.text
except requests.exceptions.RequestException as e:
input_data.instruction = ""
try:
lista_dizionari = []
nuova_lista_dizionari = []
lista_dizionari = json.loads(input_data.instruction)
if lista_dizionari and "Titolo" in lista_dizionari[0]:
nuova_lista_dizionari = DividiInstructionJSON(lista_dizionari, input_data)
else:
nuova_lista_dizionari = DividiInstructionText(input_data)
except json.JSONDecodeError:
nuova_lista_dizionari = DividiInstructionText(input_data)
return nuova_lista_dizionari
def split_at_space_or_dot(input_string, length):
delimiters = ['\n\n', '.\n', ';\n', '.', ' ']
positions = [input_string.rfind(d, 0, length) for d in delimiters]
valid_positions = [pos for pos in positions if pos >= 0]
lastpos = max(valid_positions) if valid_positions else length
indice_divisione = int(lastpos)
return indice_divisione + 1
def DividiInstructionJSON(lista_dizionari, input_data):
ListaInput = []
nuova_lista_dizionari = []
for dizionario in lista_dizionari:
titolo = dizionario["Titolo"]
testo_completo = dizionario["Testo"]
while len(testo_completo) > input_data.NumeroCaratteriSplitInstruction:
indice_divisione = split_at_space_or_dot(testo_completo, input_data.NumeroCaratteriSplitInstruction)
indice_divisione_precedente = split_at_space_or_dot(testo_completo, input_data.NumeroCaratteriSplitInstruction-100)
sottostringa = testo_completo[:indice_divisione].strip()
testo_completo = testo_completo[indice_divisione_precedente:].strip()
nuovo_dizionario = {"Titolo": titolo, "Testo": sottostringa}
nuova_lista_dizionari.append(nuovo_dizionario)
if len(testo_completo) > 0:
nuovo_dizionario = {"Titolo": titolo, "Testo": testo_completo}
nuova_lista_dizionari.append(nuovo_dizionario)
input_strings = input_data.input.split(input_data.StringaSplit)
systemRole_strings = input_data.systemRole.split(input_data.StringaSplit)
for systemRole_string in systemRole_strings:
for input_string in input_strings:
for dizionario in nuova_lista_dizionari:
data = {
'input': input_string,
'instruction': str(dizionario),
'temperature': input_data.temperature,
'max_new_tokens': input_data.max_new_tokens,
'top_p': input_data.top_p,
'repetition_penalty': input_data.repetition_penalty,
'systemRole': systemRole_string,
'systemStyle': input_data.systemStyle,
'telegramChatId': input_data.telegramChatId,
'telegramUrlBot': input_data.telegramUrlBot,
'telegramUrlPost': input_data.telegramUrlPost
}
ListaInput.append(data)
return ListaInput
def DividiInstructionText(input_data):
ListaInput = []
input_str = input_data.instruction
StringaSplit = input_data.StringaSplit
sottostringhe = []
indice_inizio = 0
if len(input_str) > input_data.NumeroCaratteriSplitInstruction:
while indice_inizio < len(input_str):
lunghezza_sottostringa = split_at_space_or_dot(input_str[indice_inizio:], input_data.NumeroCaratteriSplitInstruction)
sottostringhe.append(input_str[indice_inizio:indice_inizio + lunghezza_sottostringa].strip())
indice_inizio += lunghezza_sottostringa
else:
sottostringhe.append(input_str)
testoSeparato = StringaSplit.join(sottostringhe)
instruction_strings = testoSeparato.split(StringaSplit)
input_strings = input_data.input.split(input_data.StringaSplit)
systemRole_strings = input_data.systemRole.split(input_data.StringaSplit)
for systemRole_string in systemRole_strings:
for input_string in input_strings:
for instruction_string in instruction_strings:
data = {
'input': input_string.strip(),
'instruction': str([instruction_string.strip()]),
'temperature': input_data.temperature,
'max_new_tokens': input_data.max_new_tokens,
'top_p': input_data.top_p,
'repetition_penalty': input_data.repetition_penalty,
'systemRole': systemRole_string.strip(),
'systemStyle': input_data.systemStyle,
'telegramChatId': input_data.telegramChatId,
'telegramUrlBot': input_data.telegramUrlBot,
'telegramUrlPost': input_data.telegramUrlPost
}
ListaInput.append(data)
return ListaInput
async def GeneraTestoAsync(url, input_data):
token = os.getenv('TOKEN')
semaphore = asyncio.Semaphore(20)
async with aiohttp.ClientSession() as session:
tasks = []
ListaInput = await CreaListaInput(input_data)
for data in ListaInput:
LoggaTesto("RICHIESTA ASINCRONA", data)
tasks.extend([make_request(session, token, data, url, index, semaphore) for index in range(input_data.NumeroGenerazioni)])
#tasks.extend([generate_text_internal(data) for _ in range(input_data.NumeroGenerazioni)])
await asyncio.sleep(0.1)
return await asyncio.gather(*tasks)
async def generate_text_internal(datajson):
data = SimpleNamespace(**datajson)
temperature = data.temperature
max_new_tokens = data.max_new_tokens
top_p = data.top_p
repetition_penalty = data.repetition_penalty
input_text = generate_input_text(data)
max_new_tokens = min(max_new_tokens, 29500 - len(input_text))
history = []
generated_response = generate(input_text, history, temperature, max_new_tokens, top_p, repetition_penalty)
return generated_response
#--------------------------------------------------- Generazione IMMAGINE ------------------------------------------------------
style_image = {
"PROFESSIONAL-PHOTO": {
"descrizione": "Professional photo {prompt} . Vivid colors, Mirrorless, 35mm lens, f/1.8 aperture, ISO 100, natural daylight",
"negativePrompt": "out of frame, lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"
},
"CINEMATIC-PHOTO": {
"descrizione": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negativePrompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
},
"CINEMATIC-PORTRAIT": {
"descrizione": "cinematic portrait {prompt} 8k, ultra realistic, good vibes, vibrant",
"negativePrompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly"
},
"LINE-ART-DRAWING": {
"descrizione": "line art drawing {prompt} . professional, sleek, modern, minimalist, graphic, line art, vector graphics",
"negativePrompt": "anime, photorealistic, 35mm film, deformed, glitch, blurry, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, mutated, realism, realistic, impressionism, expressionism, oil, acrylic"
},
"COMIC": {
"descrizione": "comic {prompt} . graphic illustration, comic art, graphic novel art, vibrant, highly detailed",
"negativePrompt": "photograph, deformed, glitch, noisy, realistic, stock photo"
},
"ADVERTISING-POSTER-STYLE": {
"descrizione": "advertising poster style {prompt} . Professional, modern, product-focused, commercial, eye-catching, highly detailed",
"negativePrompt": "noisy, blurry, amateurish, sloppy, unattractive"
},
"RETAIL-PACKAGING-STYLE": {
"descrizione": "retail packaging style {prompt} . vibrant, enticing, commercial, product-focused, eye-catching, professional, highly detailed",
"negativePrompt": "noisy, blurry, amateurish, sloppy, unattractive"
},
"GRAFFITI-STYLE": {
"descrizione": "graffiti style {prompt} . street art, vibrant, urban, detailed, tag, mural",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic"
},
"POP-ART-STYLE": {
"descrizione": "pop Art style {prompt} . bright colors, bold outlines, popular culture themes, ironic or kitsch",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, minimalist"
},
"ISOMETRIC-STYLE": {
"descrizione": "isometric style {prompt} . vibrant, beautiful, crisp, detailed, ultra detailed, intricate",
"negativePrompt": "deformed, mutated, ugly, disfigured, blur, blurry, noise, noisy, realistic, photographic"
},
"LOW-POLY-STYLE": {
"descrizione": "low-poly style {prompt}. ambient occlusion, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition",
"negativePrompt": "noisy, sloppy, messy, grainy, highly detailed, ultra textured, photo"
},
"CLAYMATION-STYLE": {
"descrizione": "claymation style {prompt} . sculpture, clay art, centered composition, play-doh",
"negativePrompt": ""
},
"PROFESSIONAL-3D-MODEL": {
"descrizione": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negativePrompt": "ugly, deformed, noisy, low poly, blurry, painting"
},
"ANIME-ARTWORK": {
"descrizione": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negativePrompt": "photo, deformed, black and white, realism, disfigured, low contrast"
},
"ETHEREAL-FANTASY-CONCEPT-ART": {
"descrizione": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negativePrompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white"
},
"CYBERNETIC-STYLE": {
"descrizione": "cybernetic style {prompt} . futuristic, technological, cybernetic enhancements, robotics, artificial intelligence themes",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, historical, medieval"
},
"FUTURISTIC-STYLE": {
"descrizione": "futuristic style {prompt} . sleek, modern, ultramodern, high tech, detailed",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, vintage, antique"
},
"SCI-FI-STYLE": {
"descrizione": "sci-fi style {prompt} . futuristic, technological, alien worlds, space themes, advanced civilizations",
"negativePrompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, historical, medieval"
},
"DIGITAL-ART": {
"descrizione": "Digital Art {prompt} . vibrant, cute, digital, handmade",
"negativePrompt": ""
},
"SIMPLE-LOGO": {
"descrizione": "Minimalist Logo {prompt} . material design, primary colors, stylized, minimalist",
"negativePrompt": "3D, high detail, noise, grainy, blurry, painting, drawing, photo, disfigured"
},
"MINIMALISTIC-LOGO": {
"descrizione": "Ultra-minimalist Material Design logo for a BRAND: {prompt} . simple, few colors, clean lines, minimal details, modern color palette, no shadows",
"negativePrompt": "3D, high detail, noise, grainy, blurry, painting, drawing, photo, disfigured"
}
}
class InputImage(BaseModel):
input: str
negativePrompt: str = ''
style: str = ''
steps: int = 25
cfg: int = 6
seed: int = -1
variante = False
@app.post("/Immagine")
def generate_image(request: Request, input_data: InputImage):
#client = Client("https://manjushri-sdxl-1-0.hf.space/")
if input_data.style:
print(input_data.style)
if input_data.style == 'RANDOM':
random_style = random.choice(list(style_image.keys()))
style_info = style_image[random_style]
input_data.input = style_info["descrizione"].format(prompt=input_data.input)
input_data.negativePrompt = style_info["negativePrompt"]
elif input_data.style in style_image:
style_info = style_image[input_data.style]
input_data.input = style_info["descrizione"].format(prompt=input_data.input)
input_data.negativePrompt = style_info["negativePrompt"]
max_attempts = 5
attempt = 0
while attempt < max_attempts:
try:
print(input_data.input)
if input_data.variante == False:
#client = Client("AP123/SDXL-Lightning")
client = Client("ByteDance/SDXL-Lightning")
result = client.predict(
input_data.input,
"8-Step",
api_name="/generate_image"
)
image_url = result
else:
#client = Client("https://playgroundai-playground-v2-5.hf.space/--replicas/9kuov/")
client = Client("https://choimirai-playground-v2-5.hf.space/--replicas/bgsav/")
result = client.predict(
input_data.input, # str in 'Prompt' Textbox component
input_data.negativePrompt, # str in 'Negative prompt' Textbox component
True, # bool in 'Use negative prompt' Checkbox component
0, # float (numeric value between 0 and 2147483647) in 'Seed' Slider component
1024, # float (numeric value between 256 and 1536) in 'Width' Slider component
1024, # float (numeric value between 256 and 1536) in 'Height' Slider component
3, # float (numeric value between 0.1 and 20) in 'Guidance Scale' Slider component
True, # bool in 'Randomize seed' Checkbox component
api_name="/run"
)
image_url = result[0][0]['image']
print(image_url)
with open(image_url, 'rb') as img_file:
img_binary = img_file.read()
img_base64 = base64.b64encode(img_binary).decode('utf-8')
return {"response": img_base64}
except requests.exceptions.HTTPError as e:
time.sleep(1)
attempt += 1
if attempt < max_attempts:
continue
else:
return {"error": "Errore interno del server persistente!"}
return {"error": "Numero massimo di tentativi raggiunto"}
#--------------------------------------------------- IMAGE TO TEXT ------------------------------------------------------
class InputImageToText(BaseModel):
base64: str
input: str = ''
def base64_in_immagine(dati_base64):
immagine = base64.b64decode(dati_base64)
immagine_pil = Image.open(BytesIO(immagine))
nome_file = "/tmp/img.jpg"
immagine_pil.save(nome_file)
@app.post("/Image_To_Text")
def image_to_text(request: Request, input_data: InputImageToText):
base64_in_immagine(input_data.base64)
Version = 1
if Version == 1:
client = Client("https://vikhyatk-moondream1.hf.space/--replicas/av7ct/")
result = client.predict(
"/tmp/img.jpg",
input_data.input,
api_name="/answer_question"
)
else:
client = Client("vikhyatk/moondream2")
result = client.predict(
"/tmp/img.jpg",
input_data.input,
api_name="/answer_question_1"
)
LoggaTesto("IMMAGINE", {"response": result}, False)
return {"response": result}
#--------------------------------------------------- API PostSpazio ------------------------------------------------------
@app.post("/PostSpazio")
def generate_postspazio(request: Request, input_data: PostSpazio):
client = Client(input_data.nomeSpazio)
result = client.predict(
input_data.input,
api_name=input_data.api_name
)
return {"response": result}
@app.get("/")
def read_general():
return {"response": "Benvenuto. Per maggiori info: https://matteoscript-fastapi.hf.space/docs"} |