Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ def display_csv(file_path, columns_to_display):
|
|
| 5 |
# Load the CSV file using pandas
|
| 6 |
df = pd.read_csv(file_path)
|
| 7 |
# Select only the specified columns
|
| 8 |
-
df_selected_columns = df[columns_to_display]
|
| 9 |
# Display the selected columns as a table
|
| 10 |
st.dataframe(df_selected_columns.sort_values(by=columns_to_display[0]), height=500, width=1000)
|
| 11 |
|
|
@@ -22,7 +22,7 @@ def main():
|
|
| 22 |
|
| 23 |
# Add header and description
|
| 24 |
st.header("CLIP benchmarks - retrieval and inference")
|
| 25 |
-
st.write("CLIP benchmarks for inference and retrieval performance. Image size, context length and output dimensions are also included. Retrieval performance comes from https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_retrieval_results.csv
|
| 26 |
|
| 27 |
# Call the display_csv function with the hardcoded file path and selected columns
|
| 28 |
display_csv(file_path, columns_to_display)
|
|
|
|
| 5 |
# Load the CSV file using pandas
|
| 6 |
df = pd.read_csv(file_path)
|
| 7 |
# Select only the specified columns
|
| 8 |
+
df_selected_columns = df[columns_to_display].sort_values(by=['avg_score']).reset_index(drop=True)
|
| 9 |
# Display the selected columns as a table
|
| 10 |
st.dataframe(df_selected_columns.sort_values(by=columns_to_display[0]), height=500, width=1000)
|
| 11 |
|
|
|
|
| 22 |
|
| 23 |
# Add header and description
|
| 24 |
st.header("CLIP benchmarks - retrieval and inference")
|
| 25 |
+
st.write("CLIP benchmarks for inference and retrieval performance. Image size, context length and output dimensions are also included. Retrieval performance comes from https://github.com/mlfoundations/open_clip/blob/main/docs/openclip_retrieval_results.csv.Tested with A10G, CUDA 12.1, Torch 2.1.0")
|
| 26 |
|
| 27 |
# Call the display_csv function with the hardcoded file path and selected columns
|
| 28 |
display_csv(file_path, columns_to_display)
|