from sentence_transformers import SentenceTransformer from chromadb import Documents, Embeddings, EmbeddingFunction class CustomEmbeddingFunction(EmbeddingFunction): def __call__(self, text_chunks: Documents) -> Embeddings: embedding_model = SentenceTransformer( model_name_or_path="all-mpnet-base-v2", device="cpu", ) return embedding_model.encode(text_chunks)