Spaces:
Paused
Paused
Upload 3 files
Browse files- utils/__init__.py +0 -0
- utils/dataset_utils.py +144 -0
- utils/embedding_utils.py +11 -0
utils/__init__.py
ADDED
File without changes
|
utils/dataset_utils.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import kaggle
|
3 |
+
import tempfile
|
4 |
+
import requests
|
5 |
+
import multiprocessing
|
6 |
+
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
from bs4 import BeautifulSoup
|
10 |
+
from concurrent.futures import ThreadPoolExecutor
|
11 |
+
|
12 |
+
def _generate_sources() -> pd.DataFrame:
|
13 |
+
""" Generate a dataset containing urls to retrieve data from"""
|
14 |
+
dataset = pd.DataFrame({'type': [], 'name': [], 'url': []})
|
15 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
16 |
+
kaggle.api.dataset_download_files('rohanrao/formula-1-world-championship-1950-2020', path=temp_dir, unzip=True)
|
17 |
+
df = pd.read_csv(temp_dir + '/circuits.csv')
|
18 |
+
|
19 |
+
# remove all columns except 'name' and 'url'
|
20 |
+
df = df[['name', 'url']]
|
21 |
+
df['type'] = 'circuit'
|
22 |
+
dataset = pd.concat([dataset, df], ignore_index=True)
|
23 |
+
|
24 |
+
# Drivers
|
25 |
+
df = pd.read_csv(temp_dir + '/drivers.csv')
|
26 |
+
|
27 |
+
# remove all columns except 'forename', 'surname' and 'url'
|
28 |
+
df = df[['forename', 'surname', 'url']]
|
29 |
+
|
30 |
+
# Join 'forename' and 'surname' columns
|
31 |
+
df['name'] = df['forename'] + ' ' + df['surname']
|
32 |
+
|
33 |
+
df = df[['name', 'url']]
|
34 |
+
df['type'] = 'driver'
|
35 |
+
|
36 |
+
dataset = pd.concat([dataset, df], ignore_index=True)
|
37 |
+
|
38 |
+
# Constructors
|
39 |
+
df = pd.read_csv(temp_dir + '/constructors.csv')
|
40 |
+
|
41 |
+
# Remove broken links
|
42 |
+
df = df[(df['url'] != 'http://en.wikipedia.org/wiki/Turner_(constructor)') & (df['url'] != 'http://en.wikipedia.org/wiki/Hall_(constructor)')]
|
43 |
+
|
44 |
+
# remove all columns except 'name' and 'url'
|
45 |
+
df = df[['name', 'url']]
|
46 |
+
df['type'] = 'constructor'
|
47 |
+
|
48 |
+
dataset = pd.concat([dataset, df], ignore_index=True)
|
49 |
+
|
50 |
+
# Races
|
51 |
+
df = pd.read_csv(temp_dir + '/races.csv')
|
52 |
+
|
53 |
+
# remove all columns except 'name' and 'url'
|
54 |
+
df['name'] = df['name'] + " " + df['year'].astype(str) + "-" + df['round'].astype(str)
|
55 |
+
df = df[['name', 'url']]
|
56 |
+
df['type'] = 'race'
|
57 |
+
|
58 |
+
dataset = pd.concat([dataset, df], ignore_index=True)
|
59 |
+
|
60 |
+
# Seasons
|
61 |
+
df = pd.read_csv(temp_dir + '/seasons.csv')
|
62 |
+
|
63 |
+
# remove all columns except 'year' and 'url'
|
64 |
+
df = df[['year', 'url']]
|
65 |
+
df['name'] = 'Year ' + df['year'].astype(str)
|
66 |
+
|
67 |
+
df = df[['name', 'url']]
|
68 |
+
df['type'] = 'season'
|
69 |
+
|
70 |
+
dataset = pd.concat([dataset, df], ignore_index=True)
|
71 |
+
|
72 |
+
return dataset
|
73 |
+
|
74 |
+
def _extract_paragraphs(url):
|
75 |
+
response = requests.get(url)
|
76 |
+
html = response.text
|
77 |
+
|
78 |
+
soup = BeautifulSoup(html, "html.parser")
|
79 |
+
|
80 |
+
pars = soup.find_all("p")
|
81 |
+
pars = [p.get_text() for p in pars]
|
82 |
+
return pars
|
83 |
+
|
84 |
+
def generate_trainset(persist: bool = True, persist_path: str = './datasets', filename='train.csv') -> pd.DataFrame:
|
85 |
+
"""
|
86 |
+
Generate the dataset used to train the model.
|
87 |
+
|
88 |
+
Parameters:
|
89 |
+
persist (bool): Whether to save the generated dataset to a file.
|
90 |
+
persist_path (str): The directory where the generated dataset will be saved.
|
91 |
+
filename (str): The name of the file to save the dataset.
|
92 |
+
|
93 |
+
Returns:
|
94 |
+
pd.DataFrame: The generated DataFrame.
|
95 |
+
"""
|
96 |
+
|
97 |
+
if os.path.exists(persist_path + '/' + filename):
|
98 |
+
return pd.read_csv(f"{persist_path}/{filename}")
|
99 |
+
|
100 |
+
sources = _generate_sources()
|
101 |
+
|
102 |
+
num_threads = multiprocessing.cpu_count()
|
103 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
104 |
+
paragraphs = list(executor.map(_extract_paragraphs, sources['url']))
|
105 |
+
paragraphs = [" ".join(p[0:5]).strip("\n") for p in paragraphs] # Take the first 4 paragraphs
|
106 |
+
sources['description'] = paragraphs
|
107 |
+
df = sources[['type', 'name', 'description']]
|
108 |
+
|
109 |
+
if persist:
|
110 |
+
os.makedirs(persist_path, exist_ok=True)
|
111 |
+
df.to_csv(f"{persist_path}/{filename}", index=False)
|
112 |
+
|
113 |
+
return df
|
114 |
+
|
115 |
+
def generate_ragset(persist=True, persist_path: str = './datasets', filename='rag.csv') -> pd.DataFrame:
|
116 |
+
"""
|
117 |
+
Generate the dataset used for Retrieval-Augmented Generation.
|
118 |
+
|
119 |
+
Parameters:
|
120 |
+
persist (bool): Whether to save the generated dataset to a file.
|
121 |
+
persist_path (str): The directory where the generated dataset will be saved.
|
122 |
+
filename (str): The name of the file to save the dataset.
|
123 |
+
|
124 |
+
Returns:
|
125 |
+
pd.DataFrame: The generated DataFrame.
|
126 |
+
"""
|
127 |
+
|
128 |
+
if os.path.exists(persist_path + '/' + filename):
|
129 |
+
return pd.read_csv(f"{persist_path}/{filename}")
|
130 |
+
|
131 |
+
sources = _generate_sources()
|
132 |
+
|
133 |
+
num_threads = multiprocessing.cpu_count()
|
134 |
+
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
135 |
+
paragraphs = list(executor.map(_extract_paragraphs, sources['url']))
|
136 |
+
paragraphs = [" ".join(p).strip("\n") for p in paragraphs] # Take all the paragraphs
|
137 |
+
sources['description'] = paragraphs
|
138 |
+
df = sources[['type', 'name', 'description']]
|
139 |
+
|
140 |
+
if persist:
|
141 |
+
os.makedirs(persist_path, exist_ok=True)
|
142 |
+
df.to_csv(f"{persist_path}/{filename}", index=False)
|
143 |
+
|
144 |
+
return df
|
utils/embedding_utils.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer
|
2 |
+
from chromadb import Documents, Embeddings, EmbeddingFunction
|
3 |
+
|
4 |
+
class CustomEmbeddingFunction(EmbeddingFunction):
|
5 |
+
def __call__(self, text_chunks: Documents) -> Embeddings:
|
6 |
+
embedding_model = SentenceTransformer(
|
7 |
+
model_name_or_path="all-mpnet-base-v2",
|
8 |
+
device="cpu",
|
9 |
+
)
|
10 |
+
|
11 |
+
return embedding_model.encode(text_chunks)
|