Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,30 @@
|
|
1 |
import os
|
|
|
|
|
2 |
import streamlit as st
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
from chromadb import HttpClient
|
6 |
from utils.embedding_utils import CustomEmbeddingFunction
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
|
9 |
-
st.title("FormulAI
|
|
|
|
|
10 |
|
|
|
|
|
11 |
model_name = "unsloth/Llama-3.2-1B"
|
12 |
|
13 |
-
model
|
|
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
|
|
|
16 |
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
|
17 |
peft_config = PeftConfig.from_pretrained(adapter_name)
|
18 |
-
|
19 |
-
model = PeftModel(model, peft_config)
|
20 |
|
21 |
template = """Answer the following QUESTION based on the CONTEXT given.
|
22 |
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".
|
@@ -37,7 +45,7 @@ if 'past' not in st.session_state:
|
|
37 |
st.session_state['past'] = []
|
38 |
|
39 |
def get_text():
|
40 |
-
input_text = st.text_input("
|
41 |
return input_text
|
42 |
|
43 |
load_dotenv("chroma.env")
|
@@ -57,12 +65,11 @@ if question:
|
|
57 |
context = " ".join(response['documents'][0])
|
58 |
|
59 |
input_text = template.replace("{context}", context).replace("{question}", question)
|
60 |
-
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
61 |
|
62 |
output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
|
63 |
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1]
|
64 |
|
65 |
-
|
66 |
st.session_state.past.append(question)
|
67 |
st.session_state.generated.append(answer)
|
68 |
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
import streamlit as st
|
5 |
+
|
6 |
from dotenv import load_dotenv
|
7 |
from peft import PeftModel, PeftConfig
|
8 |
from chromadb import HttpClient
|
9 |
from utils.embedding_utils import CustomEmbeddingFunction
|
10 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
11 |
|
12 |
+
st.title("FormulAI")
|
13 |
+
st.write("Benvenuto FormulaAI il Chatbot riguardante la Formula Uno! Chiedimi ciò che vuoi a riguardo!")
|
14 |
+
st.write("I am a chatbot that has been fine-tuned on the FormuLLaMa-3.2-1B dataset.")
|
15 |
|
16 |
+
# Device and model configuration
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
model_name = "unsloth/Llama-3.2-1B"
|
19 |
|
20 |
+
# Load pretrained model and tokenizer
|
21 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
23 |
|
24 |
+
# Load PEFT configuration and apply to model on device
|
25 |
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
|
26 |
peft_config = PeftConfig.from_pretrained(adapter_name)
|
27 |
+
model = PeftModel(model, peft_config).to(device)
|
|
|
28 |
|
29 |
template = """Answer the following QUESTION based on the CONTEXT given.
|
30 |
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".
|
|
|
45 |
st.session_state['past'] = []
|
46 |
|
47 |
def get_text():
|
48 |
+
input_text = st.text_input("Chiedi qualcosa: ", "", key="input")
|
49 |
return input_text
|
50 |
|
51 |
load_dotenv("chroma.env")
|
|
|
65 |
context = " ".join(response['documents'][0])
|
66 |
|
67 |
input_text = template.replace("{context}", context).replace("{question}", question)
|
68 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
69 |
|
70 |
output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
|
71 |
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1]
|
72 |
|
|
|
73 |
st.session_state.past.append(question)
|
74 |
st.session_state.generated.append(answer)
|
75 |
|