FormuLLaMa-Demo / app.py
MarioCerulo's picture
Update app.py
54eb26a verified
import os
import torch
import streamlit as st
from dotenv import load_dotenv
from peft import PeftModel, PeftConfig
from chromadb import HttpClient
from utils.embedding_utils import CustomEmbeddingFunction
from transformers import AutoModelForCausalLM, AutoTokenizer
st.title("FormulAI")
# Device and model configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "unsloth/Llama-3.2-1B"
# Load pretrained model and tokenizer
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Load PEFT configuration and apply to model on device
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
peft_config = PeftConfig.from_pretrained(adapter_name)
model = PeftModel(model, peft_config).to(device)
template = """Answer the following QUESTION based on the CONTEXT given.
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".
CONTEXT:
{context}
QUESTION:
{question}
ANSWER:
"""
if 'generated' not in st.session_state:
st.session_state['generated'] = []
if 'past' not in st.session_state:
st.session_state['past'] = []
def get_text():
input_text = st.text_input("Ask a question regarding Formula 1: ", "", key="input")
return input_text
load_dotenv("chroma.env")
chroma_host = os.getenv("CHROMA_HOST", "localhost")
chroma_port = os.getenv("CHROMA_PORT", 8000)
chroma_collection = os.getenv("CHROMA_COLLECTION", "F1-wiki")
chroma_client = HttpClient(host=chroma_host, port=chroma_port)
collection = chroma_client.get_collection(name="F1-wiki", embedding_function=CustomEmbeddingFunction())
question = get_text()
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
if question:
with st.spinner("Generating answer... "):
response = collection.query(query_texts=question, include=['documents'], n_results=5)
context = " ".join(response['documents'][0])
input_text = template.replace("{context}", context).replace("{question}", question)
input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
attention_mask = (input_ids != tokenizer.pad_token_id).to(device)
output = model.generate(input_ids, attention_mask=attention_mask, max_new_tokens=200, early_stopping=True)
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1].strip()
st.session_state.past.append(question)
st.session_state.generated.append(answer)
st.write(answer)