diff --git a/Dockerfile b/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..0963d27334b4941d1f42f99f660d82d995d6f0c9
--- /dev/null
+++ b/Dockerfile
@@ -0,0 +1,20 @@
+FROM python:3.11.0
+
+RUN apt-get update && apt-get install -y \
+    libgl1 \
+    libglib2.0-0 \
+    && rm -rf /var/lib/apt/lists/*
+
+RUN useradd -m -u 1000 user
+USER user
+ENV PATH="/home/user/.local/bin:$PATH"
+
+WORKDIR /app
+
+COPY --chown=user ./requirements.txt requirements.txt
+RUN pip install --no-cache-dir --upgrade -r requirements.txt
+
+COPY --chown=user . /app
+EXPOSE 7860
+
+CMD ["gunicorn","-b","0.0.0.0:7860", "app:app"]
diff --git a/README.md b/README.md
index da7c1ddf675a99b4d6c02c45faa96530ccbfe9ff..a32ebddee58dd7a42eab7d3e4ffd75c0b6a546cf 100644
--- a/README.md
+++ b/README.md
@@ -1,6 +1,6 @@
 ---
 title: Segmentation Yolo Sam
-emoji: 📉
+emoji: 🏆
 colorFrom: purple
 colorTo: gray
 sdk: docker
diff --git a/app.log b/app.log
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..59971bf9404aeec681d4c15925615872fe6e3632
--- /dev/null
+++ b/app.py
@@ -0,0 +1,797 @@
+from flask import Flask, render_template, request, jsonify
+from flask_socketio import SocketIO
+import os
+import shutil
+import numpy as np
+from PIL import Image
+from utils.predictor import Predictor
+from utils.helpers import (
+    blend_mask_with_image,
+    save_mask_as_png,
+    convert_mask_to_yolo,
+)
+import torch
+from ultralytics import YOLO
+import threading
+from threading import Lock
+import subprocess
+import time
+import logging
+import multiprocessing
+
+
+# Initialize Flask app and SocketIO
+app = Flask(__name__)
+socketio = SocketIO(app)
+
+# Define Base Directory
+BASE_DIR = os.path.abspath(os.path.dirname(__file__))
+
+# Folder structure with absolute paths
+UPLOAD_FOLDERS = {
+    'input': os.path.join(BASE_DIR, 'static/uploads/input'),
+    'segmented_voids': os.path.join(BASE_DIR, 'static/uploads/segmented/voids'),
+    'segmented_chips': os.path.join(BASE_DIR, 'static/uploads/segmented/chips'),
+    'mask_voids': os.path.join(BASE_DIR, 'static/uploads/mask/voids'),
+    'mask_chips': os.path.join(BASE_DIR, 'static/uploads/mask/chips'),
+    'automatic_segmented': os.path.join(BASE_DIR, 'static/uploads/segmented/automatic'),
+}
+
+HISTORY_FOLDERS = {
+    'images': os.path.join(BASE_DIR, 'static/history/images'),
+    'masks_chip': os.path.join(BASE_DIR, 'static/history/masks/chip'),
+    'masks_void': os.path.join(BASE_DIR, 'static/history/masks/void'),
+}
+
+DATASET_FOLDERS = {
+    'train_images': os.path.join(BASE_DIR, 'dataset/train/images'),
+    'train_labels': os.path.join(BASE_DIR, 'dataset/train/labels'),
+    'val_images': os.path.join(BASE_DIR, 'dataset/val/images'),
+    'val_labels': os.path.join(BASE_DIR, 'dataset/val/labels'),
+    'temp_backup': os.path.join(BASE_DIR, 'temp_backup'),
+    'models': os.path.join(BASE_DIR, 'models'),
+    'models_old': os.path.join(BASE_DIR, 'models/old'),
+}
+
+# Ensure all folders exist
+for folder_name, folder_path in {**UPLOAD_FOLDERS, **HISTORY_FOLDERS, **DATASET_FOLDERS}.items():
+    os.makedirs(folder_path, exist_ok=True)
+    logging.info(f"Ensured folder exists: {folder_name} -> {folder_path}")
+
+training_process = None
+
+
+def initialize_training_status():
+    """Initialize global training status."""
+    global training_status
+    training_status = {'running': False, 'cancelled': False}
+
+def persist_training_status():
+    """Save training status to a file."""
+    with open(os.path.join(BASE_DIR, 'training_status.json'), 'w') as status_file:
+        json.dump(training_status, status_file)
+
+def load_training_status():
+    """Load training status from a file."""
+    global training_status
+    status_path = os.path.join(BASE_DIR, 'training_status.json')
+    if os.path.exists(status_path):
+        with open(status_path, 'r') as status_file:
+            training_status = json.load(status_file)
+    else:
+        training_status = {'running': False, 'cancelled': False}
+
+load_training_status()
+
+os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0"
+
+# Initialize SAM Predictor
+MODEL_CFG = r"\sam2\configs\sam2.1\sam2.1_hiera_l.yaml"
+CHECKPOINT = r"\checkpoints\sam2.1_hiera_large.pt"
+DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
+predictor = Predictor(MODEL_CFG, CHECKPOINT, DEVICE)
+
+# Initialize YOLO-seg
+YOLO_CFG = os.path.join(DATASET_FOLDERS['models'], "best.pt")
+yolo_model = YOLO(YOLO_CFG)
+
+# Configure logging
+logging.basicConfig(
+    level=logging.INFO,
+    format='%(asctime)s [%(levelname)s] %(message)s',
+    handlers=[
+        logging.StreamHandler(),
+        logging.FileHandler(os.path.join(BASE_DIR, "app.log"))  # Log to a file
+    ]
+)
+
+
+@app.route('/')
+def index():
+    """Serve the main UI."""
+    return render_template('index.html')
+
+@app.route('/upload', methods=['POST'])
+def upload_image():
+    """Handle image uploads."""
+    if 'file' not in request.files:
+        return jsonify({'error': 'No file uploaded'}), 400
+    file = request.files['file']
+    if file.filename == '':
+        return jsonify({'error': 'No file selected'}), 400
+
+    # Save the uploaded file to the input folder
+    input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
+    file.save(input_path)
+
+    # Set the uploaded image in the predictor
+    image = np.array(Image.open(input_path).convert("RGB"))
+    predictor.set_image(image)
+
+    # Return a web-accessible URL instead of the file system path
+    web_accessible_url = f"/static/uploads/input/{file.filename}"
+    print(f"Image uploaded and set for prediction: {input_path}")
+    return jsonify({'image_url': web_accessible_url})
+
+@app.route('/segment', methods=['POST'])
+def segment():
+    """
+    Perform segmentation and return the blended image URL.
+    """
+    try:
+        # Extract data from request
+        data = request.json
+        points = np.array(data.get('points', []))
+        labels = np.array(data.get('labels', []))
+        current_class = data.get('class', 'voids')  # Default to 'voids' if class not provided
+
+        # Ensure predictor has an image set
+        if not predictor.image_set:
+            raise ValueError("No image set for prediction.")
+
+        # Perform SAM prediction
+        masks, _, _ = predictor.predict(
+            point_coords=points,
+            point_labels=labels,
+            multimask_output=False
+        )
+
+        # Check if masks exist and have non-zero elements
+        if masks is None or masks.size == 0:
+            raise RuntimeError("No masks were generated by the predictor.")
+
+        # Define output paths based on class
+        mask_folder = UPLOAD_FOLDERS.get(f'mask_{current_class}')
+        segmented_folder = UPLOAD_FOLDERS.get(f'segmented_{current_class}')
+
+        if not mask_folder or not segmented_folder:
+            raise ValueError(f"Invalid class '{current_class}' provided.")
+
+        os.makedirs(mask_folder, exist_ok=True)
+        os.makedirs(segmented_folder, exist_ok=True)
+
+        # Save the raw mask
+        mask_path = os.path.join(mask_folder, 'raw_mask.png')
+        save_mask_as_png(masks[0], mask_path)
+
+        # Generate blended image
+        blend_color = [34, 139, 34] if current_class == 'voids' else [30, 144, 255]  # Green for voids, blue for chips
+        blended_image = blend_mask_with_image(predictor.image, masks[0], blend_color)
+
+        # Save blended image
+        blended_filename = f"blended_{current_class}.png"
+        blended_path = os.path.join(segmented_folder, blended_filename)
+        Image.fromarray(blended_image).save(blended_path)
+
+        # Return URL for frontend access
+        segmented_url = f"/static/uploads/segmented/{current_class}/{blended_filename}"
+        logging.info(f"Segmentation completed for {current_class}. Points: {points}, Labels: {labels}")
+        return jsonify({'segmented_url': segmented_url})
+
+    except ValueError as ve:
+        logging.error(f"Value error during segmentation: {ve}")
+        return jsonify({'error': str(ve)}), 400
+
+    except Exception as e:
+        logging.error(f"Unexpected error during segmentation: {e}")
+        return jsonify({'error': 'Segmentation failed', 'details': str(e)}), 500
+
+@app.route('/automatic_segment', methods=['POST'])
+def automatic_segment():
+    """Perform automatic segmentation using YOLO."""
+    if 'file' not in request.files:
+        return jsonify({'error': 'No file uploaded'}), 400
+    file = request.files['file']
+    if file.filename == '':
+        return jsonify({'error': 'No file selected'}), 400
+
+    input_path = os.path.join(UPLOAD_FOLDERS['input'], file.filename)
+    file.save(input_path)
+
+    try:
+        # Perform YOLO segmentation
+        results = yolo_model.predict(input_path, save=False, save_txt=False)
+        output_folder = UPLOAD_FOLDERS['automatic_segmented']
+        os.makedirs(output_folder, exist_ok=True)
+
+        chips_data = []
+        chips = []
+        voids = []
+
+        # Process results and save segmented images
+        for result in results:
+            annotated_image = result.plot()
+            result_filename = f"{file.filename.rsplit('.', 1)[0]}_pred.jpg"
+            result_path = os.path.join(output_folder, result_filename)
+            Image.fromarray(annotated_image).save(result_path)
+
+            # Separate chips and voids
+            for i, label in enumerate(result.boxes.cls):  # YOLO labels
+                label_name = result.names[int(label)]  # Get label name (e.g., 'chip' or 'void')
+                box = result.boxes.xyxy[i].cpu().numpy()  # Bounding box (x1, y1, x2, y2)
+                area = float((box[2] - box[0]) * (box[3] - box[1]))  # Calculate area
+
+                if label_name == 'chip':
+                    chips.append({'box': box, 'area': area, 'voids': []})
+                elif label_name == 'void':
+                    voids.append({'box': box, 'area': area})
+
+            # Assign voids to chips based on proximity
+            for void in voids:
+                void_centroid = [
+                    (void['box'][0] + void['box'][2]) / 2,  # x centroid
+                    (void['box'][1] + void['box'][3]) / 2   # y centroid
+                ]
+                for chip in chips:
+                    # Check if void centroid is within chip bounding box
+                    if (chip['box'][0] <= void_centroid[0] <= chip['box'][2] and
+                            chip['box'][1] <= void_centroid[1] <= chip['box'][3]):
+                        chip['voids'].append(void)
+                        break
+
+            # Calculate metrics for each chip
+            for idx, chip in enumerate(chips):
+                chip_area = chip['area']
+                total_void_area = sum([float(void['area']) for void in chip['voids']])
+                max_void_area = max([float(void['area']) for void in chip['voids']], default=0)
+
+                void_percentage = (total_void_area / chip_area) * 100 if chip_area > 0 else 0
+                max_void_percentage = (max_void_area / chip_area) * 100 if chip_area > 0 else 0
+
+                chips_data.append({
+                    "chip_number": int(idx + 1),
+                    "chip_area": round(chip_area, 2),
+                    "void_percentage": round(void_percentage, 2),
+                    "max_void_percentage": round(max_void_percentage, 2)
+                })
+
+        # Return the segmented image URL and table data
+        segmented_url = f"/static/uploads/segmented/automatic/{result_filename}"
+        return jsonify({
+            "segmented_url": segmented_url,  # Use the URL for frontend access
+            "table_data": {
+                "image_name": file.filename,
+                "chips": chips_data
+            }
+        })
+
+    except Exception as e:
+        print(f"Error in automatic segmentation: {e}")
+        return jsonify({'error': 'Segmentation failed.'}), 500
+
+@app.route('/save_both', methods=['POST'])
+def save_both():
+    """Save both the image and masks into the history folders."""
+    data = request.json
+    image_name = data.get('image_name')
+
+    if not image_name:
+        return jsonify({'error': 'Image name not provided'}), 400
+
+    try:
+        # Ensure image_name is a pure file name
+        image_name = os.path.basename(image_name)  # Strip any directory path
+        print(f"Sanitized Image Name: {image_name}")
+
+        # Correctly resolve the input image path
+        input_image_path = os.path.join(UPLOAD_FOLDERS['input'], image_name)
+        if not os.path.exists(input_image_path):
+            print(f"Input image does not exist: {input_image_path}")
+            return jsonify({'error': f'Input image not found: {input_image_path}'}), 404
+
+        # Copy the image to history/images
+        image_history_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
+        os.makedirs(os.path.dirname(image_history_path), exist_ok=True)
+        shutil.copy(input_image_path, image_history_path)
+        print(f"Image saved to history: {image_history_path}")
+
+        # Backup void mask
+        void_mask_path = os.path.join(UPLOAD_FOLDERS['mask_voids'], 'raw_mask.png')
+        if os.path.exists(void_mask_path):
+            void_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
+            os.makedirs(os.path.dirname(void_mask_history_path), exist_ok=True)
+            shutil.copy(void_mask_path, void_mask_history_path)
+            print(f"Voids mask saved to history: {void_mask_history_path}")
+        else:
+            print(f"Voids mask not found: {void_mask_path}")
+
+        # Backup chip mask
+        chip_mask_path = os.path.join(UPLOAD_FOLDERS['mask_chips'], 'raw_mask.png')
+        if os.path.exists(chip_mask_path):
+            chip_mask_history_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
+            os.makedirs(os.path.dirname(chip_mask_history_path), exist_ok=True)
+            shutil.copy(chip_mask_path, chip_mask_history_path)
+            print(f"Chips mask saved to history: {chip_mask_history_path}")
+        else:
+            print(f"Chips mask not found: {chip_mask_path}")
+
+        return jsonify({'message': 'Image and masks saved successfully!'}), 200
+
+    except Exception as e:
+        print(f"Error saving files: {e}")
+        return jsonify({'error': 'Failed to save files.', 'details': str(e)}), 500
+
+@app.route('/get_history', methods=['GET'])
+def get_history():
+    try:
+        saved_images = os.listdir(HISTORY_FOLDERS['images'])
+        return jsonify({'status': 'success', 'images': saved_images}), 200
+    except Exception as e:
+        return jsonify({'status': 'error', 'message': f'Failed to fetch history: {e}'}), 500
+
+
+@app.route('/delete_history_item', methods=['POST'])
+def delete_history_item():
+    data = request.json
+    image_name = data.get('image_name')
+
+    if not image_name:
+        return jsonify({'error': 'Image name not provided'}), 400
+
+    try:
+        image_path = os.path.join(HISTORY_FOLDERS['images'], image_name)
+        if os.path.exists(image_path):
+            os.remove(image_path)
+
+        void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
+        if os.path.exists(void_mask_path):
+            os.remove(void_mask_path)
+
+        chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
+        if os.path.exists(chip_mask_path):
+            os.remove(chip_mask_path)
+
+        return jsonify({'message': f'{image_name} and associated masks deleted successfully.'}), 200
+    except Exception as e:
+        return jsonify({'error': f'Failed to delete files: {e}'}), 500
+
+# Lock for training status updates
+status_lock = Lock()
+
+def update_training_status(key, value):
+    """Thread-safe update for training status."""
+    with status_lock:
+        training_status[key] = value
+
+@app.route('/retrain_model', methods=['POST'])
+def retrain_model():
+    """Handle retrain model workflow."""
+    global training_status
+
+    if training_status.get('running', False):
+        return jsonify({'error': 'Training is already in progress'}), 400
+
+    try:
+        # Update training status
+        update_training_status('running', True)
+        update_training_status('cancelled', False)
+        logging.info("Training status updated. Starting training workflow.")
+
+        # Backup masks and images
+        backup_masks_and_images()
+        logging.info("Backup completed successfully.")
+
+        # Prepare YOLO labels
+        prepare_yolo_labels()
+        logging.info("YOLO labels prepared successfully.")
+
+        # Start YOLO training in a separate thread
+        threading.Thread(target=run_yolo_training).start()
+        return jsonify({'message': 'Training started successfully!'}), 200
+
+    except Exception as e:
+        logging.error(f"Error during training preparation: {e}")
+        update_training_status('running', False)
+        return jsonify({'error': f"Failed to start training: {e}"}), 500
+        
+def prepare_yolo_labels():
+    """Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
+    images_folder = HISTORY_FOLDERS['images']  # Use history images as the source
+    train_labels_folder = DATASET_FOLDERS['train_labels']
+    train_images_folder = DATASET_FOLDERS['train_images']
+    val_labels_folder = DATASET_FOLDERS['val_labels']
+    val_images_folder = DATASET_FOLDERS['val_images']
+
+    # Ensure destination directories exist
+    os.makedirs(train_labels_folder, exist_ok=True)
+    os.makedirs(train_images_folder, exist_ok=True)
+    os.makedirs(val_labels_folder, exist_ok=True)
+    os.makedirs(val_images_folder, exist_ok=True)
+
+    try:
+        all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
+        random.shuffle(all_images)  # Shuffle the images for randomness
+
+        # Determine split index
+        split_idx = int(len(all_images) * 0.8)  # 80% for training, 20% for validation
+
+        # Split images into train and validation sets
+        train_images = all_images[:split_idx]
+        val_images = all_images[split_idx:]
+
+        # Process training images
+        for image_name in train_images:
+            process_image_and_mask(
+                image_name,
+                source_images_folder=images_folder,
+                dest_images_folder=train_images_folder,
+                dest_labels_folder=train_labels_folder
+            )
+
+        # Process validation images
+        for image_name in val_images:
+            process_image_and_mask(
+                image_name,
+                source_images_folder=images_folder,
+                dest_images_folder=val_images_folder,
+                dest_labels_folder=val_labels_folder
+            )
+
+        logging.info("YOLO labels prepared, and images split into train and validation successfully.")
+
+    except Exception as e:
+        logging.error(f"Error in preparing YOLO labels: {e}")
+        raise
+  
+import random
+
+def prepare_yolo_labels():
+    """Convert all masks into YOLO-compatible labels and copy images to the dataset folder."""
+    images_folder = HISTORY_FOLDERS['images']  # Use history images as the source
+    train_labels_folder = DATASET_FOLDERS['train_labels']
+    train_images_folder = DATASET_FOLDERS['train_images']
+    val_labels_folder = DATASET_FOLDERS['val_labels']
+    val_images_folder = DATASET_FOLDERS['val_images']
+
+    # Ensure destination directories exist
+    os.makedirs(train_labels_folder, exist_ok=True)
+    os.makedirs(train_images_folder, exist_ok=True)
+    os.makedirs(val_labels_folder, exist_ok=True)
+    os.makedirs(val_images_folder, exist_ok=True)
+
+    try:
+        all_images = [img for img in os.listdir(images_folder) if img.endswith(('.jpg', '.png'))]
+        random.shuffle(all_images)  # Shuffle the images for randomness
+
+        # Determine split index
+        split_idx = int(len(all_images) * 0.8)  # 80% for training, 20% for validation
+
+        # Split images into train and validation sets
+        train_images = all_images[:split_idx]
+        val_images = all_images[split_idx:]
+
+        # Process training images
+        for image_name in train_images:
+            process_image_and_mask(
+                image_name,
+                source_images_folder=images_folder,
+                dest_images_folder=train_images_folder,
+                dest_labels_folder=train_labels_folder
+            )
+
+        # Process validation images
+        for image_name in val_images:
+            process_image_and_mask(
+                image_name,
+                source_images_folder=images_folder,
+                dest_images_folder=val_images_folder,
+                dest_labels_folder=val_labels_folder
+            )
+
+        logging.info("YOLO labels prepared, and images split into train and validation successfully.")
+
+    except Exception as e:
+        logging.error(f"Error in preparing YOLO labels: {e}")
+        raise
+
+
+def process_image_and_mask(image_name, source_images_folder, dest_images_folder, dest_labels_folder):
+    """
+    Process a single image and its masks, saving them in the appropriate YOLO format.
+    """
+    try:
+        image_path = os.path.join(source_images_folder, image_name)
+        label_file_path = os.path.join(dest_labels_folder, f"{os.path.splitext(image_name)[0]}.txt")
+
+        # Copy image to the destination images folder
+        shutil.copy(image_path, os.path.join(dest_images_folder, image_name))
+
+        # Clear the label file if it exists
+        if os.path.exists(label_file_path):
+            os.remove(label_file_path)
+
+        # Process void mask
+        void_mask_path = os.path.join(HISTORY_FOLDERS['masks_void'], f"{os.path.splitext(image_name)[0]}.png")
+        if os.path.exists(void_mask_path):
+            convert_mask_to_yolo(
+                mask_path=void_mask_path,
+                image_path=image_path,
+                class_id=0,  # Void class
+                output_path=label_file_path
+            )
+
+        # Process chip mask
+        chip_mask_path = os.path.join(HISTORY_FOLDERS['masks_chip'], f"{os.path.splitext(image_name)[0]}.png")
+        if os.path.exists(chip_mask_path):
+            convert_mask_to_yolo(
+                mask_path=chip_mask_path,
+                image_path=image_path,
+                class_id=1,  # Chip class
+                output_path=label_file_path,
+                append=True  # Append chip annotations
+            )
+
+        logging.info(f"Processed {image_name} into YOLO format.")
+    except Exception as e:
+        logging.error(f"Error processing {image_name}: {e}")
+        raise
+  
+def backup_masks_and_images():
+    """Backup current masks and images from history folders."""
+    temp_backup_paths = {
+        'voids': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/voids'),
+        'chips': os.path.join(DATASET_FOLDERS['temp_backup'], 'masks/chips'),
+        'images': os.path.join(DATASET_FOLDERS['temp_backup'], 'images')
+    }
+
+    # Prepare all backup directories
+    for path in temp_backup_paths.values():
+        if os.path.exists(path):
+            shutil.rmtree(path)
+        os.makedirs(path, exist_ok=True)
+
+    try:
+        # Backup images from history
+        for file in os.listdir(HISTORY_FOLDERS['images']):
+            src_image_path = os.path.join(HISTORY_FOLDERS['images'], file)
+            dst_image_path = os.path.join(temp_backup_paths['images'], file)
+            shutil.copy(src_image_path, dst_image_path)
+
+        # Backup void masks from history
+        for file in os.listdir(HISTORY_FOLDERS['masks_void']):
+            src_void_path = os.path.join(HISTORY_FOLDERS['masks_void'], file)
+            dst_void_path = os.path.join(temp_backup_paths['voids'], file)
+            shutil.copy(src_void_path, dst_void_path)
+
+        # Backup chip masks from history
+        for file in os.listdir(HISTORY_FOLDERS['masks_chip']):
+            src_chip_path = os.path.join(HISTORY_FOLDERS['masks_chip'], file)
+            dst_chip_path = os.path.join(temp_backup_paths['chips'], file)
+            shutil.copy(src_chip_path, dst_chip_path)
+
+        logging.info("Masks and images backed up successfully from history.")
+    except Exception as e:
+        logging.error(f"Error during backup: {e}")
+        raise RuntimeError("Backup process failed.")
+
+def run_yolo_training(num_epochs=10):
+    """Run YOLO training process."""
+    global training_process
+
+    try:
+        device = "cuda" if torch.cuda.is_available() else "cpu"
+        data_cfg_path = os.path.join(BASE_DIR, "models/data.yaml")  # Ensure correct YAML path
+
+        logging.info(f"Starting YOLO training on {device} with {num_epochs} epochs.")
+        logging.info(f"Using dataset configuration: {data_cfg_path}")
+
+        training_command = [
+            "yolo",
+            "train",
+            f"data={data_cfg_path}",
+            f"model={os.path.join(DATASET_FOLDERS['models'], 'best.pt')}",
+            f"device={device}",
+            f"epochs={num_epochs}",
+            "project=runs",
+            "name=train"
+        ]
+
+        training_process = subprocess.Popen(
+            training_command,
+            stdout=subprocess.PIPE,
+            stderr=subprocess.STDOUT,
+            text=True,
+            env=os.environ.copy(),
+        )
+
+        # Display and log output in real time
+        for line in iter(training_process.stdout.readline, ''):
+            print(line.strip())
+            logging.info(line.strip())
+            socketio.emit('training_update', {'message': line.strip()})  # Send updates to the frontend
+
+        training_process.wait()
+
+        if training_process.returncode == 0:
+            finalize_training()  # Finalize successfully completed training
+        else:
+            raise RuntimeError("YOLO training process failed. Check logs for details.")
+    except Exception as e:
+        logging.error(f"Training error: {e}")
+        restore_backup()  # Restore the dataset and masks
+
+        # Emit training error event to the frontend
+        socketio.emit('training_status', {'status': 'error', 'message': f"Training failed: {str(e)}"})
+    finally:
+        update_training_status('running', False)
+        training_process = None  # Reset the process
+
+
+@socketio.on('cancel_training')
+def handle_cancel_training():
+    """Cancel the YOLO training process."""
+    global training_process, training_status
+
+    if not training_status.get('running', False):
+        socketio.emit('button_update', {'action': 'retrain'})  # Update button to retrain
+        return
+
+    try:
+        training_process.terminate()
+        training_process.wait()
+        training_status['running'] = False
+        training_status['cancelled'] = True
+
+        restore_backup()
+        cleanup_train_val_directories()
+
+        # Emit button state change
+        socketio.emit('button_update', {'action': 'retrain'})
+        socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
+    except Exception as e:
+        logging.error(f"Error cancelling training: {e}")
+        socketio.emit('training_status', {'status': 'error', 'message': str(e)})
+
+def finalize_training():
+    """Finalize training by promoting the new model and cleaning up."""
+    try:
+        # Locate the most recent training directory
+        runs_dir = os.path.join(BASE_DIR, 'runs')
+        if not os.path.exists(runs_dir):
+            raise FileNotFoundError("Training runs directory does not exist.")
+
+        # Get the latest training run folder
+        latest_run = max(
+            [os.path.join(runs_dir, d) for d in os.listdir(runs_dir)],
+            key=os.path.getmtime
+        )
+        weights_dir = os.path.join(latest_run, 'weights')
+        best_model_path = os.path.join(weights_dir, 'best.pt')
+
+        if not os.path.exists(best_model_path):
+            raise FileNotFoundError(f"'best.pt' not found in {weights_dir}.")
+
+        # Backup the old model
+        old_model_folder = DATASET_FOLDERS['models_old']
+        os.makedirs(old_model_folder, exist_ok=True)
+        existing_best_model = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
+
+        if os.path.exists(existing_best_model):
+            timestamp = time.strftime("%Y%m%d_%H%M%S")
+            shutil.move(existing_best_model, os.path.join(old_model_folder, f"old_{timestamp}.pt"))
+            logging.info(f"Old model backed up to {old_model_folder}.")
+
+        # Move the new model to the models directory
+        new_model_dest = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
+        shutil.move(best_model_path, new_model_dest)
+        logging.info(f"New model saved to {new_model_dest}.")
+
+        # Notify frontend that training is completed
+        socketio.emit('training_status', {
+            'status': 'completed',
+            'message': 'Training completed successfully! Model saved as best.pt.'
+        })
+
+        # Clean up train/val directories
+        cleanup_train_val_directories()
+        logging.info("Train and validation directories cleaned up successfully.")
+
+    except Exception as e:
+        logging.error(f"Error finalizing training: {e}")
+        # Emit error status to the frontend
+        socketio.emit('training_status', {'status': 'error', 'message': f"Error finalizing training: {str(e)}"})
+
+def restore_backup():
+    """Restore the dataset and masks from the backup."""
+    try:
+        temp_backup = DATASET_FOLDERS['temp_backup']
+        shutil.copytree(os.path.join(temp_backup, 'masks/voids'), UPLOAD_FOLDERS['mask_voids'], dirs_exist_ok=True)
+        shutil.copytree(os.path.join(temp_backup, 'masks/chips'), UPLOAD_FOLDERS['mask_chips'], dirs_exist_ok=True)
+        shutil.copytree(os.path.join(temp_backup, 'images'), UPLOAD_FOLDERS['input'], dirs_exist_ok=True)
+        logging.info("Backup restored successfully.")
+    except Exception as e:
+        logging.error(f"Error restoring backup: {e}")
+
+@app.route('/cancel_training', methods=['POST'])
+def cancel_training():
+    global training_process
+
+    if training_process is None:
+        logging.error("No active training process to terminate.")
+        return jsonify({'error': 'No active training process to cancel.'}), 400
+
+    try:
+        training_process.terminate()
+        training_process.wait()
+        training_process = None  # Reset the process after termination
+
+        # Update training status
+        update_training_status('running', False)
+        update_training_status('cancelled', True)
+
+        # Check if the model is already saved as best.pt
+        best_model_path = os.path.join(DATASET_FOLDERS['models'], 'best.pt')
+        if os.path.exists(best_model_path):
+            logging.info(f"Model already saved as best.pt at {best_model_path}.")
+            socketio.emit('button_update', {'action': 'revert'})  # Notify frontend to revert button state
+        else:
+            logging.info("Training canceled, but no new model was saved.")
+
+        # Restore backup if needed
+        restore_backup()
+        cleanup_train_val_directories()
+
+        # Emit status update to frontend
+        socketio.emit('training_status', {'status': 'cancelled', 'message': 'Training was canceled by the user.'})
+        return jsonify({'message': 'Training canceled and data restored successfully.'}), 200
+
+    except Exception as e:
+        logging.error(f"Error cancelling training: {e}")
+        return jsonify({'error': f"Failed to cancel training: {e}"}), 500
+
+@app.route('/clear_history', methods=['POST'])
+def clear_history():
+    try:
+        for folder in [HISTORY_FOLDERS['images'], HISTORY_FOLDERS['masks_chip'], HISTORY_FOLDERS['masks_void']]:
+            shutil.rmtree(folder, ignore_errors=True)
+            os.makedirs(folder, exist_ok=True)  # Recreate the empty folder
+        return jsonify({'message': 'History cleared successfully!'}), 200
+    except Exception as e:
+        return jsonify({'error': f'Failed to clear history: {e}'}), 500
+
+@app.route('/training_status', methods=['GET'])
+def get_training_status():
+    """Return the current training status."""
+    if training_status.get('running', False):
+        return jsonify({'status': 'running', 'message': 'Training in progress.'}), 200
+    elif training_status.get('cancelled', False):
+        return jsonify({'status': 'cancelled', 'message': 'Training was cancelled.'}), 200
+    return jsonify({'status': 'idle', 'message': 'No training is currently running.'}), 200
+
+def cleanup_train_val_directories():
+    """Clear the train and validation directories."""
+    try:
+        for folder in [DATASET_FOLDERS['train_images'], DATASET_FOLDERS['train_labels'], 
+                       DATASET_FOLDERS['val_images'], DATASET_FOLDERS['val_labels']]:
+            shutil.rmtree(folder, ignore_errors=True)  # Remove folder contents
+            os.makedirs(folder, exist_ok=True)  # Recreate empty folders
+        logging.info("Train and validation directories cleaned up successfully.")
+    except Exception as e:
+        logging.error(f"Error cleaning up train/val directories: {e}")
+
+
+if __name__ == '__main__':
+    multiprocessing.set_start_method('spawn')  # Required for multiprocessing on Windows
+    app.run(debug=True, use_reloader=False)
+
+
diff --git a/checkpoints/download_ckpts.sh b/checkpoints/download_ckpts.sh
new file mode 100644
index 0000000000000000000000000000000000000000..eedee8eee153f17c6db3b92de5492fa0a11ec3b7
--- /dev/null
+++ b/checkpoints/download_ckpts.sh
@@ -0,0 +1,59 @@
+#!/bin/bash
+
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Use either wget or curl to download the checkpoints
+if command -v wget &> /dev/null; then
+    CMD="wget"
+elif command -v curl &> /dev/null; then
+    CMD="curl -L -O"
+else
+    echo "Please install wget or curl to download the checkpoints."
+    exit 1
+fi
+
+# Define the URLs for SAM 2 checkpoints
+# SAM2_BASE_URL="https://dl.fbaipublicfiles.com/segment_anything_2/072824"
+# sam2_hiera_t_url="${SAM2_BASE_URL}/sam2_hiera_tiny.pt"
+# sam2_hiera_s_url="${SAM2_BASE_URL}/sam2_hiera_small.pt"
+# sam2_hiera_b_plus_url="${SAM2_BASE_URL}/sam2_hiera_base_plus.pt"
+# sam2_hiera_l_url="${SAM2_BASE_URL}/sam2_hiera_large.pt"
+
+# Download each of the four checkpoints using wget
+# echo "Downloading sam2_hiera_tiny.pt checkpoint..."
+# $CMD $sam2_hiera_t_url || { echo "Failed to download checkpoint from $sam2_hiera_t_url"; exit 1; }
+
+# echo "Downloading sam2_hiera_small.pt checkpoint..."
+# $CMD $sam2_hiera_s_url || { echo "Failed to download checkpoint from $sam2_hiera_s_url"; exit 1; }
+
+# echo "Downloading sam2_hiera_base_plus.pt checkpoint..."
+# $CMD $sam2_hiera_b_plus_url || { echo "Failed to download checkpoint from $sam2_hiera_b_plus_url"; exit 1; }
+
+# echo "Downloading sam2_hiera_large.pt checkpoint..."
+# $CMD $sam2_hiera_l_url || { echo "Failed to download checkpoint from $sam2_hiera_l_url"; exit 1; }
+
+# Define the URLs for SAM 2.1 checkpoints
+SAM2p1_BASE_URL="https://dl.fbaipublicfiles.com/segment_anything_2/092824"
+sam2p1_hiera_t_url="${SAM2p1_BASE_URL}/sam2.1_hiera_tiny.pt"
+sam2p1_hiera_s_url="${SAM2p1_BASE_URL}/sam2.1_hiera_small.pt"
+sam2p1_hiera_b_plus_url="${SAM2p1_BASE_URL}/sam2.1_hiera_base_plus.pt"
+sam2p1_hiera_l_url="${SAM2p1_BASE_URL}/sam2.1_hiera_large.pt"
+
+# SAM 2.1 checkpoints
+echo "Downloading sam2.1_hiera_tiny.pt checkpoint..."
+$CMD $sam2p1_hiera_t_url || { echo "Failed to download checkpoint from $sam2p1_hiera_t_url"; exit 1; }
+
+echo "Downloading sam2.1_hiera_small.pt checkpoint..."
+$CMD $sam2p1_hiera_s_url || { echo "Failed to download checkpoint from $sam2p1_hiera_s_url"; exit 1; }
+
+echo "Downloading sam2.1_hiera_base_plus.pt checkpoint..."
+$CMD $sam2p1_hiera_b_plus_url || { echo "Failed to download checkpoint from $sam2p1_hiera_b_plus_url"; exit 1; }
+
+echo "Downloading sam2.1_hiera_large.pt checkpoint..."
+$CMD $sam2p1_hiera_l_url || { echo "Failed to download checkpoint from $sam2p1_hiera_l_url"; exit 1; }
+
+echo "All checkpoints are downloaded successfully."
diff --git a/checkpoints/sam2.1_hiera_large.pt b/checkpoints/sam2.1_hiera_large.pt
new file mode 100644
index 0000000000000000000000000000000000000000..a4229617ddc0bd034440718c11588c0bbcf85a70
--- /dev/null
+++ b/checkpoints/sam2.1_hiera_large.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2647878d5dfa5098f2f8649825738a9345572bae2d4350a2468587ece47dd318
+size 898083611
diff --git a/checkpoints/sam2_hiera_large.pt b/checkpoints/sam2_hiera_large.pt
new file mode 100644
index 0000000000000000000000000000000000000000..7198ee4779a9e91db4d79bdc80e188cc182482e0
--- /dev/null
+++ b/checkpoints/sam2_hiera_large.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7442e4e9b732a508f80e141e7c2913437a3610ee0c77381a66658c3a445df87b
+size 897952466
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..a60f1c5dc5d807bb0bb6d315ef7e435ca37e9813
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,15 @@
+decord==0.6.0
+Flask==3.1.0
+Flask_SocketIO==5.4.1
+huggingface_hub==0.24.6
+hydra-core==1.3.2
+iopath==0.1.10
+numpy==2.1.3
+omegaconf==2.3.0
+opencv_python==4.10.0.84
+opencv_python_headless==4.10.0.84
+Pillow==11.0.0
+pycocotools==2.0.8
+torch==2.3.1
+tqdm==4.66.5
+ultralytics==8.3.35
diff --git a/runtime.txt b/runtime.txt
new file mode 100644
index 0000000000000000000000000000000000000000..cd6f13073e4940080f1692d0e6b2e5fdb98c3a51
--- /dev/null
+++ b/runtime.txt
@@ -0,0 +1 @@
+python-3.11.1
\ No newline at end of file
diff --git a/sam2/__init__.py b/sam2/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0712dd03cb280ab94ba04f8a32aa8ddc8aa3db4a
--- /dev/null
+++ b/sam2/__init__.py
@@ -0,0 +1,11 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from hydra import initialize_config_module
+from hydra.core.global_hydra import GlobalHydra
+
+if not GlobalHydra.instance().is_initialized():
+    initialize_config_module("sam2", version_base="1.2")
diff --git a/sam2/__pycache__/__init__.cpython-311.pyc b/sam2/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..576661585a2cc26cf83457a8b6c99bcceb9307dd
Binary files /dev/null and b/sam2/__pycache__/__init__.cpython-311.pyc differ
diff --git a/sam2/__pycache__/build_sam.cpython-311.pyc b/sam2/__pycache__/build_sam.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..46a7be3857de70a415c388a19209dc33b8047aea
Binary files /dev/null and b/sam2/__pycache__/build_sam.cpython-311.pyc differ
diff --git a/sam2/__pycache__/sam2_image_predictor.cpython-311.pyc b/sam2/__pycache__/sam2_image_predictor.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..5f95e7c46c6e10fc8dffe2cc33bfb50ac3b7e42c
Binary files /dev/null and b/sam2/__pycache__/sam2_image_predictor.cpython-311.pyc differ
diff --git a/sam2/automatic_mask_generator.py b/sam2/automatic_mask_generator.py
new file mode 100644
index 0000000000000000000000000000000000000000..065e469e27c2d3af40d51d072031e828692c799b
--- /dev/null
+++ b/sam2/automatic_mask_generator.py
@@ -0,0 +1,454 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
+from typing import Any, Dict, List, Optional, Tuple
+
+import numpy as np
+import torch
+from torchvision.ops.boxes import batched_nms, box_area  # type: ignore
+
+from sam2.modeling.sam2_base import SAM2Base
+from sam2.sam2_image_predictor import SAM2ImagePredictor
+from sam2.utils.amg import (
+    area_from_rle,
+    batch_iterator,
+    batched_mask_to_box,
+    box_xyxy_to_xywh,
+    build_all_layer_point_grids,
+    calculate_stability_score,
+    coco_encode_rle,
+    generate_crop_boxes,
+    is_box_near_crop_edge,
+    mask_to_rle_pytorch,
+    MaskData,
+    remove_small_regions,
+    rle_to_mask,
+    uncrop_boxes_xyxy,
+    uncrop_masks,
+    uncrop_points,
+)
+
+
+class SAM2AutomaticMaskGenerator:
+    def __init__(
+        self,
+        model: SAM2Base,
+        points_per_side: Optional[int] = 32,
+        points_per_batch: int = 64,
+        pred_iou_thresh: float = 0.8,
+        stability_score_thresh: float = 0.95,
+        stability_score_offset: float = 1.0,
+        mask_threshold: float = 0.0,
+        box_nms_thresh: float = 0.7,
+        crop_n_layers: int = 0,
+        crop_nms_thresh: float = 0.7,
+        crop_overlap_ratio: float = 512 / 1500,
+        crop_n_points_downscale_factor: int = 1,
+        point_grids: Optional[List[np.ndarray]] = None,
+        min_mask_region_area: int = 0,
+        output_mode: str = "binary_mask",
+        use_m2m: bool = False,
+        multimask_output: bool = True,
+        **kwargs,
+    ) -> None:
+        """
+        Using a SAM 2 model, generates masks for the entire image.
+        Generates a grid of point prompts over the image, then filters
+        low quality and duplicate masks. The default settings are chosen
+        for SAM 2 with a HieraL backbone.
+
+        Arguments:
+          model (Sam): The SAM 2 model to use for mask prediction.
+          points_per_side (int or None): The number of points to be sampled
+            along one side of the image. The total number of points is
+            points_per_side**2. If None, 'point_grids' must provide explicit
+            point sampling.
+          points_per_batch (int): Sets the number of points run simultaneously
+            by the model. Higher numbers may be faster but use more GPU memory.
+          pred_iou_thresh (float): A filtering threshold in [0,1], using the
+            model's predicted mask quality.
+          stability_score_thresh (float): A filtering threshold in [0,1], using
+            the stability of the mask under changes to the cutoff used to binarize
+            the model's mask predictions.
+          stability_score_offset (float): The amount to shift the cutoff when
+            calculated the stability score.
+          mask_threshold (float): Threshold for binarizing the mask logits
+          box_nms_thresh (float): The box IoU cutoff used by non-maximal
+            suppression to filter duplicate masks.
+          crop_n_layers (int): If >0, mask prediction will be run again on
+            crops of the image. Sets the number of layers to run, where each
+            layer has 2**i_layer number of image crops.
+          crop_nms_thresh (float): The box IoU cutoff used by non-maximal
+            suppression to filter duplicate masks between different crops.
+          crop_overlap_ratio (float): Sets the degree to which crops overlap.
+            In the first crop layer, crops will overlap by this fraction of
+            the image length. Later layers with more crops scale down this overlap.
+          crop_n_points_downscale_factor (int): The number of points-per-side
+            sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
+          point_grids (list(np.ndarray) or None): A list over explicit grids
+            of points used for sampling, normalized to [0,1]. The nth grid in the
+            list is used in the nth crop layer. Exclusive with points_per_side.
+          min_mask_region_area (int): If >0, postprocessing will be applied
+            to remove disconnected regions and holes in masks with area smaller
+            than min_mask_region_area. Requires opencv.
+          output_mode (str): The form masks are returned in. Can be 'binary_mask',
+            'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
+            For large resolutions, 'binary_mask' may consume large amounts of
+            memory.
+          use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
+          multimask_output (bool): Whether to output multimask at each point of the grid.
+        """
+
+        assert (points_per_side is None) != (
+            point_grids is None
+        ), "Exactly one of points_per_side or point_grid must be provided."
+        if points_per_side is not None:
+            self.point_grids = build_all_layer_point_grids(
+                points_per_side,
+                crop_n_layers,
+                crop_n_points_downscale_factor,
+            )
+        elif point_grids is not None:
+            self.point_grids = point_grids
+        else:
+            raise ValueError("Can't have both points_per_side and point_grid be None.")
+
+        assert output_mode in [
+            "binary_mask",
+            "uncompressed_rle",
+            "coco_rle",
+        ], f"Unknown output_mode {output_mode}."
+        if output_mode == "coco_rle":
+            try:
+                from pycocotools import mask as mask_utils  # type: ignore  # noqa: F401
+            except ImportError as e:
+                print("Please install pycocotools")
+                raise e
+
+        self.predictor = SAM2ImagePredictor(
+            model,
+            max_hole_area=min_mask_region_area,
+            max_sprinkle_area=min_mask_region_area,
+        )
+        self.points_per_batch = points_per_batch
+        self.pred_iou_thresh = pred_iou_thresh
+        self.stability_score_thresh = stability_score_thresh
+        self.stability_score_offset = stability_score_offset
+        self.mask_threshold = mask_threshold
+        self.box_nms_thresh = box_nms_thresh
+        self.crop_n_layers = crop_n_layers
+        self.crop_nms_thresh = crop_nms_thresh
+        self.crop_overlap_ratio = crop_overlap_ratio
+        self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
+        self.min_mask_region_area = min_mask_region_area
+        self.output_mode = output_mode
+        self.use_m2m = use_m2m
+        self.multimask_output = multimask_output
+
+    @classmethod
+    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
+        """
+        Load a pretrained model from the Hugging Face hub.
+
+        Arguments:
+          model_id (str): The Hugging Face repository ID.
+          **kwargs: Additional arguments to pass to the model constructor.
+
+        Returns:
+          (SAM2AutomaticMaskGenerator): The loaded model.
+        """
+        from sam2.build_sam import build_sam2_hf
+
+        sam_model = build_sam2_hf(model_id, **kwargs)
+        return cls(sam_model, **kwargs)
+
+    @torch.no_grad()
+    def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
+        """
+        Generates masks for the given image.
+
+        Arguments:
+          image (np.ndarray): The image to generate masks for, in HWC uint8 format.
+
+        Returns:
+           list(dict(str, any)): A list over records for masks. Each record is
+             a dict containing the following keys:
+               segmentation (dict(str, any) or np.ndarray): The mask. If
+                 output_mode='binary_mask', is an array of shape HW. Otherwise,
+                 is a dictionary containing the RLE.
+               bbox (list(float)): The box around the mask, in XYWH format.
+               area (int): The area in pixels of the mask.
+               predicted_iou (float): The model's own prediction of the mask's
+                 quality. This is filtered by the pred_iou_thresh parameter.
+               point_coords (list(list(float))): The point coordinates input
+                 to the model to generate this mask.
+               stability_score (float): A measure of the mask's quality. This
+                 is filtered on using the stability_score_thresh parameter.
+               crop_box (list(float)): The crop of the image used to generate
+                 the mask, given in XYWH format.
+        """
+
+        # Generate masks
+        mask_data = self._generate_masks(image)
+
+        # Encode masks
+        if self.output_mode == "coco_rle":
+            mask_data["segmentations"] = [
+                coco_encode_rle(rle) for rle in mask_data["rles"]
+            ]
+        elif self.output_mode == "binary_mask":
+            mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
+        else:
+            mask_data["segmentations"] = mask_data["rles"]
+
+        # Write mask records
+        curr_anns = []
+        for idx in range(len(mask_data["segmentations"])):
+            ann = {
+                "segmentation": mask_data["segmentations"][idx],
+                "area": area_from_rle(mask_data["rles"][idx]),
+                "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
+                "predicted_iou": mask_data["iou_preds"][idx].item(),
+                "point_coords": [mask_data["points"][idx].tolist()],
+                "stability_score": mask_data["stability_score"][idx].item(),
+                "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
+            }
+            curr_anns.append(ann)
+
+        return curr_anns
+
+    def _generate_masks(self, image: np.ndarray) -> MaskData:
+        orig_size = image.shape[:2]
+        crop_boxes, layer_idxs = generate_crop_boxes(
+            orig_size, self.crop_n_layers, self.crop_overlap_ratio
+        )
+
+        # Iterate over image crops
+        data = MaskData()
+        for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
+            crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
+            data.cat(crop_data)
+
+        # Remove duplicate masks between crops
+        if len(crop_boxes) > 1:
+            # Prefer masks from smaller crops
+            scores = 1 / box_area(data["crop_boxes"])
+            scores = scores.to(data["boxes"].device)
+            keep_by_nms = batched_nms(
+                data["boxes"].float(),
+                scores,
+                torch.zeros_like(data["boxes"][:, 0]),  # categories
+                iou_threshold=self.crop_nms_thresh,
+            )
+            data.filter(keep_by_nms)
+        data.to_numpy()
+        return data
+
+    def _process_crop(
+        self,
+        image: np.ndarray,
+        crop_box: List[int],
+        crop_layer_idx: int,
+        orig_size: Tuple[int, ...],
+    ) -> MaskData:
+        # Crop the image and calculate embeddings
+        x0, y0, x1, y1 = crop_box
+        cropped_im = image[y0:y1, x0:x1, :]
+        cropped_im_size = cropped_im.shape[:2]
+        self.predictor.set_image(cropped_im)
+
+        # Get points for this crop
+        points_scale = np.array(cropped_im_size)[None, ::-1]
+        points_for_image = self.point_grids[crop_layer_idx] * points_scale
+
+        # Generate masks for this crop in batches
+        data = MaskData()
+        for (points,) in batch_iterator(self.points_per_batch, points_for_image):
+            batch_data = self._process_batch(
+                points, cropped_im_size, crop_box, orig_size, normalize=True
+            )
+            data.cat(batch_data)
+            del batch_data
+        self.predictor.reset_predictor()
+
+        # Remove duplicates within this crop.
+        keep_by_nms = batched_nms(
+            data["boxes"].float(),
+            data["iou_preds"],
+            torch.zeros_like(data["boxes"][:, 0]),  # categories
+            iou_threshold=self.box_nms_thresh,
+        )
+        data.filter(keep_by_nms)
+
+        # Return to the original image frame
+        data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
+        data["points"] = uncrop_points(data["points"], crop_box)
+        data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
+
+        return data
+
+    def _process_batch(
+        self,
+        points: np.ndarray,
+        im_size: Tuple[int, ...],
+        crop_box: List[int],
+        orig_size: Tuple[int, ...],
+        normalize=False,
+    ) -> MaskData:
+        orig_h, orig_w = orig_size
+
+        # Run model on this batch
+        points = torch.as_tensor(
+            points, dtype=torch.float32, device=self.predictor.device
+        )
+        in_points = self.predictor._transforms.transform_coords(
+            points, normalize=normalize, orig_hw=im_size
+        )
+        in_labels = torch.ones(
+            in_points.shape[0], dtype=torch.int, device=in_points.device
+        )
+        masks, iou_preds, low_res_masks = self.predictor._predict(
+            in_points[:, None, :],
+            in_labels[:, None],
+            multimask_output=self.multimask_output,
+            return_logits=True,
+        )
+
+        # Serialize predictions and store in MaskData
+        data = MaskData(
+            masks=masks.flatten(0, 1),
+            iou_preds=iou_preds.flatten(0, 1),
+            points=points.repeat_interleave(masks.shape[1], dim=0),
+            low_res_masks=low_res_masks.flatten(0, 1),
+        )
+        del masks
+
+        if not self.use_m2m:
+            # Filter by predicted IoU
+            if self.pred_iou_thresh > 0.0:
+                keep_mask = data["iou_preds"] > self.pred_iou_thresh
+                data.filter(keep_mask)
+
+            # Calculate and filter by stability score
+            data["stability_score"] = calculate_stability_score(
+                data["masks"], self.mask_threshold, self.stability_score_offset
+            )
+            if self.stability_score_thresh > 0.0:
+                keep_mask = data["stability_score"] >= self.stability_score_thresh
+                data.filter(keep_mask)
+        else:
+            # One step refinement using previous mask predictions
+            in_points = self.predictor._transforms.transform_coords(
+                data["points"], normalize=normalize, orig_hw=im_size
+            )
+            labels = torch.ones(
+                in_points.shape[0], dtype=torch.int, device=in_points.device
+            )
+            masks, ious = self.refine_with_m2m(
+                in_points, labels, data["low_res_masks"], self.points_per_batch
+            )
+            data["masks"] = masks.squeeze(1)
+            data["iou_preds"] = ious.squeeze(1)
+
+            if self.pred_iou_thresh > 0.0:
+                keep_mask = data["iou_preds"] > self.pred_iou_thresh
+                data.filter(keep_mask)
+
+            data["stability_score"] = calculate_stability_score(
+                data["masks"], self.mask_threshold, self.stability_score_offset
+            )
+            if self.stability_score_thresh > 0.0:
+                keep_mask = data["stability_score"] >= self.stability_score_thresh
+                data.filter(keep_mask)
+
+        # Threshold masks and calculate boxes
+        data["masks"] = data["masks"] > self.mask_threshold
+        data["boxes"] = batched_mask_to_box(data["masks"])
+
+        # Filter boxes that touch crop boundaries
+        keep_mask = ~is_box_near_crop_edge(
+            data["boxes"], crop_box, [0, 0, orig_w, orig_h]
+        )
+        if not torch.all(keep_mask):
+            data.filter(keep_mask)
+
+        # Compress to RLE
+        data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
+        data["rles"] = mask_to_rle_pytorch(data["masks"])
+        del data["masks"]
+
+        return data
+
+    @staticmethod
+    def postprocess_small_regions(
+        mask_data: MaskData, min_area: int, nms_thresh: float
+    ) -> MaskData:
+        """
+        Removes small disconnected regions and holes in masks, then reruns
+        box NMS to remove any new duplicates.
+
+        Edits mask_data in place.
+
+        Requires open-cv as a dependency.
+        """
+        if len(mask_data["rles"]) == 0:
+            return mask_data
+
+        # Filter small disconnected regions and holes
+        new_masks = []
+        scores = []
+        for rle in mask_data["rles"]:
+            mask = rle_to_mask(rle)
+
+            mask, changed = remove_small_regions(mask, min_area, mode="holes")
+            unchanged = not changed
+            mask, changed = remove_small_regions(mask, min_area, mode="islands")
+            unchanged = unchanged and not changed
+
+            new_masks.append(torch.as_tensor(mask).unsqueeze(0))
+            # Give score=0 to changed masks and score=1 to unchanged masks
+            # so NMS will prefer ones that didn't need postprocessing
+            scores.append(float(unchanged))
+
+        # Recalculate boxes and remove any new duplicates
+        masks = torch.cat(new_masks, dim=0)
+        boxes = batched_mask_to_box(masks)
+        keep_by_nms = batched_nms(
+            boxes.float(),
+            torch.as_tensor(scores),
+            torch.zeros_like(boxes[:, 0]),  # categories
+            iou_threshold=nms_thresh,
+        )
+
+        # Only recalculate RLEs for masks that have changed
+        for i_mask in keep_by_nms:
+            if scores[i_mask] == 0.0:
+                mask_torch = masks[i_mask].unsqueeze(0)
+                mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
+                mask_data["boxes"][i_mask] = boxes[i_mask]  # update res directly
+        mask_data.filter(keep_by_nms)
+
+        return mask_data
+
+    def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
+        new_masks = []
+        new_iou_preds = []
+
+        for cur_points, cur_point_labels, low_res_mask in batch_iterator(
+            points_per_batch, points, point_labels, low_res_masks
+        ):
+            best_masks, best_iou_preds, _ = self.predictor._predict(
+                cur_points[:, None, :],
+                cur_point_labels[:, None],
+                mask_input=low_res_mask[:, None, :],
+                multimask_output=False,
+                return_logits=True,
+            )
+            new_masks.append(best_masks)
+            new_iou_preds.append(best_iou_preds)
+        masks = torch.cat(new_masks, dim=0)
+        return masks, torch.cat(new_iou_preds, dim=0)
diff --git a/sam2/build_sam.py b/sam2/build_sam.py
new file mode 100644
index 0000000000000000000000000000000000000000..7cfc451395792350eabf17bbb466e45e3f4a8d49
--- /dev/null
+++ b/sam2/build_sam.py
@@ -0,0 +1,167 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+import os
+
+import torch
+from hydra import compose
+from hydra.utils import instantiate
+from omegaconf import OmegaConf
+
+import sam2
+
+# Check if the user is running Python from the parent directory of the sam2 repo
+# (i.e. the directory where this repo is cloned into) -- this is not supported since
+# it could shadow the sam2 package and cause issues.
+if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
+    # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
+    # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
+    # This typically happens because the user is running Python from the parent directory
+    # that contains the sam2 repo they cloned.
+    raise RuntimeError(
+        "You're likely running Python from the parent directory of the sam2 repository "
+        "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
+        "This is not supported since the `sam2` Python package could be shadowed by the "
+        "repository name (the repository is also named `sam2` and contains the Python package "
+        "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
+        "rather than its parent dir, or from your home directory) after installing SAM 2."
+    )
+
+
+HF_MODEL_ID_TO_FILENAMES = {
+    "facebook/sam2-hiera-tiny": (
+        "configs/sam2/sam2_hiera_t.yaml",
+        "sam2_hiera_tiny.pt",
+    ),
+    "facebook/sam2-hiera-small": (
+        "configs/sam2/sam2_hiera_s.yaml",
+        "sam2_hiera_small.pt",
+    ),
+    "facebook/sam2-hiera-base-plus": (
+        "configs/sam2/sam2_hiera_b+.yaml",
+        "sam2_hiera_base_plus.pt",
+    ),
+    "facebook/sam2-hiera-large": (
+        "configs/sam2/sam2_hiera_l.yaml",
+        "sam2_hiera_large.pt",
+    ),
+    "facebook/sam2.1-hiera-tiny": (
+        "configs/sam2.1/sam2.1_hiera_t.yaml",
+        "sam2.1_hiera_tiny.pt",
+    ),
+    "facebook/sam2.1-hiera-small": (
+        "configs/sam2.1/sam2.1_hiera_s.yaml",
+        "sam2.1_hiera_small.pt",
+    ),
+    "facebook/sam2.1-hiera-base-plus": (
+        "configs/sam2.1/sam2.1_hiera_b+.yaml",
+        "sam2.1_hiera_base_plus.pt",
+    ),
+    "facebook/sam2.1-hiera-large": (
+        "configs/sam2.1/sam2.1_hiera_l.yaml",
+        "sam2.1_hiera_large.pt",
+    ),
+}
+
+
+def build_sam2(
+    config_file,
+    ckpt_path=None,
+    device="cuda",
+    mode="eval",
+    hydra_overrides_extra=[],
+    apply_postprocessing=True,
+    **kwargs,
+):
+
+    if apply_postprocessing:
+        hydra_overrides_extra = hydra_overrides_extra.copy()
+        hydra_overrides_extra += [
+            # dynamically fall back to multi-mask if the single mask is not stable
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
+        ]
+    # Read config and init model
+    cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
+    OmegaConf.resolve(cfg)
+    model = instantiate(cfg.model, _recursive_=True)
+    _load_checkpoint(model, ckpt_path)
+    model = model.to(device)
+    if mode == "eval":
+        model.eval()
+    return model
+
+
+def build_sam2_video_predictor(
+    config_file,
+    ckpt_path=None,
+    device="cuda",
+    mode="eval",
+    hydra_overrides_extra=[],
+    apply_postprocessing=True,
+    **kwargs,
+):
+    hydra_overrides = [
+        "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
+    ]
+    if apply_postprocessing:
+        hydra_overrides_extra = hydra_overrides_extra.copy()
+        hydra_overrides_extra += [
+            # dynamically fall back to multi-mask if the single mask is not stable
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
+            "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
+            # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
+            "++model.binarize_mask_from_pts_for_mem_enc=true",
+            # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
+            "++model.fill_hole_area=8",
+        ]
+    hydra_overrides.extend(hydra_overrides_extra)
+
+    # Read config and init model
+    cfg = compose(config_name=config_file, overrides=hydra_overrides)
+    OmegaConf.resolve(cfg)
+    model = instantiate(cfg.model, _recursive_=True)
+    _load_checkpoint(model, ckpt_path)
+    model = model.to(device)
+    if mode == "eval":
+        model.eval()
+    return model
+
+
+def _hf_download(model_id):
+    from huggingface_hub import hf_hub_download
+
+    config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
+    ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
+    return config_name, ckpt_path
+
+
+def build_sam2_hf(model_id, **kwargs):
+    config_name, ckpt_path = _hf_download(model_id)
+    return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
+
+
+def build_sam2_video_predictor_hf(model_id, **kwargs):
+    config_name, ckpt_path = _hf_download(model_id)
+    return build_sam2_video_predictor(
+        config_file=config_name, ckpt_path=ckpt_path, **kwargs
+    )
+
+
+def _load_checkpoint(model, ckpt_path):
+    if ckpt_path is not None:
+        sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
+        missing_keys, unexpected_keys = model.load_state_dict(sd)
+        if missing_keys:
+            logging.error(missing_keys)
+            raise RuntimeError()
+        if unexpected_keys:
+            logging.error(unexpected_keys)
+            raise RuntimeError()
+        logging.info("Loaded checkpoint sucessfully")
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml b/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..cbee3cf9b3977ebe4cc868797a9bfa9e348cb3a3
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml
@@ -0,0 +1,116 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 112
+      num_heads: 2
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [896, 448, 224, 112]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_l.yaml b/sam2/configs/sam2.1/sam2.1_hiera_l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..33c9097f34ea90beae52776eb88ad8eb1632ab66
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_l.yaml
@@ -0,0 +1,120 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 144
+      num_heads: 2
+      stages: [2, 6, 36, 4]
+      global_att_blocks: [23, 33, 43]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+      window_spec: [8, 4, 16, 8]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [1152, 576, 288, 144]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_s.yaml b/sam2/configs/sam2.1/sam2.1_hiera_s.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8e803dfea5904f5eb5e73981918c913197587728
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_s.yaml
@@ -0,0 +1,119 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 96
+      num_heads: 1
+      stages: [1, 2, 11, 2]
+      global_att_blocks: [7, 10, 13]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [768, 384, 192, 96]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1/sam2.1_hiera_t.yaml b/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..983c2ea031b7a17db439fe89fa8b7bd426ecd9bb
--- /dev/null
+++ b/sam2/configs/sam2.1/sam2.1_hiera_t.yaml
@@ -0,0 +1,121 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 96
+      num_heads: 1
+      stages: [1, 2, 7, 2]
+      global_att_blocks: [5, 7, 9]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [768, 384, 192, 96]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  # SAM decoder
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  no_obj_embed_spatial: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: true
+  proj_tpos_enc_in_obj_ptrs: true
+  use_signed_tpos_enc_to_obj_ptrs: true
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  # HieraT does not currently support compilation, should always be set to False
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml b/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..204679146854110ce8a59e9adc462a6688e56d30
--- /dev/null
+++ b/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml
@@ -0,0 +1,339 @@
+# @package _global_
+
+scratch:
+  resolution: 1024
+  train_batch_size: 1
+  num_train_workers: 10
+  num_frames: 8
+  max_num_objects: 3
+  base_lr: 5.0e-6
+  vision_lr: 3.0e-06
+  phases_per_epoch: 1
+  num_epochs: 40
+
+dataset:
+  # PATHS to Dataset
+  img_folder: null # PATH to MOSE JPEGImages folder
+  gt_folder: null  # PATH to MOSE Annotations folder
+  file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
+  multiplier: 2
+
+# Video transforms
+vos:
+  train_transforms:
+    - _target_: training.dataset.transforms.ComposeAPI
+      transforms:
+        - _target_: training.dataset.transforms.RandomHorizontalFlip
+          consistent_transform: True
+        - _target_: training.dataset.transforms.RandomAffine
+          degrees: 25
+          shear: 20
+          image_interpolation: bilinear
+          consistent_transform: True
+        - _target_: training.dataset.transforms.RandomResizeAPI
+          sizes: ${scratch.resolution}
+          square: true
+          consistent_transform: True
+        - _target_: training.dataset.transforms.ColorJitter
+          consistent_transform: True
+          brightness: 0.1
+          contrast: 0.03
+          saturation: 0.03
+          hue: null
+        - _target_: training.dataset.transforms.RandomGrayscale
+          p: 0.05
+          consistent_transform: True
+        - _target_: training.dataset.transforms.ColorJitter
+          consistent_transform: False
+          brightness: 0.1
+          contrast: 0.05
+          saturation: 0.05
+          hue: null
+        - _target_: training.dataset.transforms.ToTensorAPI
+        - _target_: training.dataset.transforms.NormalizeAPI
+          mean: [0.485, 0.456, 0.406]
+          std: [0.229, 0.224, 0.225]
+
+trainer:
+  _target_: training.trainer.Trainer
+  mode: train_only
+  max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
+  accelerator: cuda
+  seed_value: 123
+
+  model:
+    _target_: training.model.sam2.SAM2Train
+    image_encoder:
+      _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+      scalp: 1
+      trunk:
+        _target_: sam2.modeling.backbones.hieradet.Hiera
+        embed_dim: 112
+        num_heads: 2
+        drop_path_rate: 0.1
+      neck:
+        _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+        position_encoding:
+          _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+          num_pos_feats: 256
+          normalize: true
+          scale: null
+          temperature: 10000
+        d_model: 256
+        backbone_channel_list: [896, 448, 224, 112]
+        fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+        fpn_interp_model: nearest
+
+    memory_attention:
+      _target_: sam2.modeling.memory_attention.MemoryAttention
+      d_model: 256
+      pos_enc_at_input: true
+      layer:
+        _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+        activation: relu
+        dim_feedforward: 2048
+        dropout: 0.1
+        pos_enc_at_attn: false
+        self_attention:
+          _target_: sam2.modeling.sam.transformer.RoPEAttention
+          rope_theta: 10000.0
+          feat_sizes: [32, 32]
+          embedding_dim: 256
+          num_heads: 1
+          downsample_rate: 1
+          dropout: 0.1
+        d_model: 256
+        pos_enc_at_cross_attn_keys: true
+        pos_enc_at_cross_attn_queries: false
+        cross_attention:
+          _target_: sam2.modeling.sam.transformer.RoPEAttention
+          rope_theta: 10000.0
+          feat_sizes: [32, 32]
+          rope_k_repeat: True
+          embedding_dim: 256
+          num_heads: 1
+          downsample_rate: 1
+          dropout: 0.1
+          kv_in_dim: 64
+      num_layers: 4
+
+    memory_encoder:
+        _target_: sam2.modeling.memory_encoder.MemoryEncoder
+        out_dim: 64
+        position_encoding:
+          _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+          num_pos_feats: 64
+          normalize: true
+          scale: null
+          temperature: 10000
+        mask_downsampler:
+          _target_: sam2.modeling.memory_encoder.MaskDownSampler
+          kernel_size: 3
+          stride: 2
+          padding: 1
+        fuser:
+          _target_: sam2.modeling.memory_encoder.Fuser
+          layer:
+            _target_: sam2.modeling.memory_encoder.CXBlock
+            dim: 256
+            kernel_size: 7
+            padding: 3
+            layer_scale_init_value: 1e-6
+            use_dwconv: True  # depth-wise convs
+          num_layers: 2
+
+    num_maskmem: 7
+    image_size: ${scratch.resolution}
+    # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+    sigmoid_scale_for_mem_enc: 20.0
+    sigmoid_bias_for_mem_enc: -10.0
+    use_mask_input_as_output_without_sam: true
+    # Memory
+    directly_add_no_mem_embed: true
+    no_obj_embed_spatial: true
+    # use high-resolution feature map in the SAM mask decoder
+    use_high_res_features_in_sam: true
+    # output 3 masks on the first click on initial conditioning frames
+    multimask_output_in_sam: true
+    # SAM heads
+    iou_prediction_use_sigmoid: True
+    # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+    use_obj_ptrs_in_encoder: true
+    add_tpos_enc_to_obj_ptrs: true
+    proj_tpos_enc_in_obj_ptrs: true
+    use_signed_tpos_enc_to_obj_ptrs: true
+    only_obj_ptrs_in_the_past_for_eval: true
+    # object occlusion prediction
+    pred_obj_scores: true
+    pred_obj_scores_mlp: true
+    fixed_no_obj_ptr: true
+    # multimask tracking settings
+    multimask_output_for_tracking: true
+    use_multimask_token_for_obj_ptr: true
+    multimask_min_pt_num: 0
+    multimask_max_pt_num: 1
+    use_mlp_for_obj_ptr_proj: true
+    # Compilation flag
+    # compile_image_encoder: False
+
+    ####### Training specific params #######
+    # box/point input and corrections
+    prob_to_use_pt_input_for_train: 0.5
+    prob_to_use_pt_input_for_eval: 0.0
+    prob_to_use_box_input_for_train: 0.5  # 0.5*0.5 = 0.25 prob to use box instead of points
+    prob_to_use_box_input_for_eval: 0.0
+    prob_to_sample_from_gt_for_train: 0.1  # with a small prob, sampling correction points from GT mask instead of prediction errors
+    num_frames_to_correct_for_train: 2  # iteratively sample on random 1~2 frames (always include the first frame)
+    num_frames_to_correct_for_eval: 1  # only iteratively sample on first frame
+    rand_frames_to_correct_for_train: True  # random #init-cond-frame ~ 2
+    add_all_frames_to_correct_as_cond: True  # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
+    # maximum 2 initial conditioning frames
+    num_init_cond_frames_for_train: 2
+    rand_init_cond_frames_for_train: True  # random 1~2
+    num_correction_pt_per_frame: 7
+    use_act_ckpt_iterative_pt_sampling: false
+    
+
+    
+    num_init_cond_frames_for_eval: 1  # only mask on the first frame
+    forward_backbone_per_frame_for_eval: True
+    
+
+  data:
+    train:
+      _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
+      phases_per_epoch: ${scratch.phases_per_epoch}
+      batch_sizes:
+        - ${scratch.train_batch_size}
+
+      datasets:
+        - _target_: training.dataset.utils.RepeatFactorWrapper
+          dataset:
+            _target_: training.dataset.utils.ConcatDataset
+            datasets:
+            - _target_: training.dataset.vos_dataset.VOSDataset
+              transforms: ${vos.train_transforms}
+              training: true
+              video_dataset:
+                _target_: training.dataset.vos_raw_dataset.PNGRawDataset
+                img_folder: ${dataset.img_folder}
+                gt_folder: ${dataset.gt_folder}
+                file_list_txt: ${dataset.file_list_txt}
+              sampler:
+                _target_: training.dataset.vos_sampler.RandomUniformSampler
+                num_frames: ${scratch.num_frames}
+                max_num_objects: ${scratch.max_num_objects}
+              multiplier: ${dataset.multiplier}
+      shuffle: True
+      num_workers: ${scratch.num_train_workers}
+      pin_memory: True
+      drop_last: True
+      collate_fn:
+        _target_: training.utils.data_utils.collate_fn
+        _partial_: true
+        dict_key: all
+
+  optim:
+    amp:
+      enabled: True
+      amp_dtype: bfloat16
+
+    optimizer:
+      _target_: torch.optim.AdamW
+
+    gradient_clip:
+      _target_: training.optimizer.GradientClipper
+      max_norm: 0.1
+      norm_type: 2
+
+    param_group_modifiers:
+      - _target_: training.optimizer.layer_decay_param_modifier
+        _partial_: True
+        layer_decay_value: 0.9
+        apply_to: 'image_encoder.trunk'
+        overrides:
+          - pattern: '*pos_embed*'
+            value: 1.0
+
+    options:
+      lr:
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.CosineParamScheduler
+            start_value: ${scratch.base_lr}
+            end_value: ${divide:${scratch.base_lr},10}
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.CosineParamScheduler
+            start_value: ${scratch.vision_lr}
+            end_value: ${divide:${scratch.vision_lr},10}
+          param_names:
+            - 'image_encoder.*'
+      weight_decay:
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.ConstantParamScheduler
+            value: 0.1
+        - scheduler:
+            _target_: fvcore.common.param_scheduler.ConstantParamScheduler
+            value: 0.0
+          param_names:
+            - '*bias*'
+          module_cls_names: ['torch.nn.LayerNorm']
+
+  loss:
+    all:
+      _target_: training.loss_fns.MultiStepMultiMasksAndIous
+      weight_dict:
+        loss_mask: 20
+        loss_dice: 1
+        loss_iou: 1
+        loss_class: 1
+      supervise_all_iou: true
+      iou_use_l1_loss: true
+      pred_obj_scores: true
+      focal_gamma_obj_score: 0.0
+      focal_alpha_obj_score: -1.0
+
+  distributed:
+    backend: nccl
+    find_unused_parameters: True
+
+  logging:
+    tensorboard_writer:
+      _target_: training.utils.logger.make_tensorboard_logger
+      log_dir:  ${launcher.experiment_log_dir}/tensorboard
+      flush_secs: 120
+      should_log: True
+    log_dir: ${launcher.experiment_log_dir}/logs
+    log_freq: 10
+
+  # initialize from a SAM 2 checkpoint
+  checkpoint:
+    save_dir: ${launcher.experiment_log_dir}/checkpoints
+    save_freq: 0 # 0 only last checkpoint is saved.
+    model_weight_initializer:
+      _partial_: True
+      _target_: training.utils.checkpoint_utils.load_state_dict_into_model
+      strict: True
+      ignore_unexpected_keys: null
+      ignore_missing_keys: null
+
+      state_dict:
+        _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
+        checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
+        ckpt_state_dict_keys: ['model']
+
+launcher:
+  num_nodes: 1
+  gpus_per_node: 8
+  experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
+
+# SLURM args if running on a cluster
+submitit:
+  partition: null
+  account: null
+  qos: null
+  cpus_per_task: 10
+  use_cluster: false
+  timeout_hour: 24
+  name: null
+  port_range: [10000, 65000]
+
diff --git a/sam2/configs/sam2/sam2_hiera_b+.yaml b/sam2/configs/sam2/sam2_hiera_b+.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..58f3eb81554018e873f8515ecb98e36d16ac29e4
--- /dev/null
+++ b/sam2/configs/sam2/sam2_hiera_b+.yaml
@@ -0,0 +1,113 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 112
+      num_heads: 2
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [896, 448, 224, 112]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: false
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2/sam2_hiera_l.yaml b/sam2/configs/sam2/sam2_hiera_l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..918667f50c3e1ad2dcf77c0c14cb4dd114cfd080
--- /dev/null
+++ b/sam2/configs/sam2/sam2_hiera_l.yaml
@@ -0,0 +1,117 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 144
+      num_heads: 2
+      stages: [2, 6, 36, 4]
+      global_att_blocks: [23, 33, 43]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+      window_spec: [8, 4, 16, 8]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [1152, 576, 288, 144]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: false
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2/sam2_hiera_s.yaml b/sam2/configs/sam2/sam2_hiera_s.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..26e5d4d39f7b2892396106005c37c7ffe6c83bc2
--- /dev/null
+++ b/sam2/configs/sam2/sam2_hiera_s.yaml
@@ -0,0 +1,116 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 96
+      num_heads: 1
+      stages: [1, 2, 11, 2]
+      global_att_blocks: [7, 10, 13]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [768, 384, 192, 96]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: false
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  compile_image_encoder: False
diff --git a/sam2/configs/sam2/sam2_hiera_t.yaml b/sam2/configs/sam2/sam2_hiera_t.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..a62c903aaa5f80828077c6e06a59626926570ed6
--- /dev/null
+++ b/sam2/configs/sam2/sam2_hiera_t.yaml
@@ -0,0 +1,118 @@
+# @package _global_
+
+# Model
+model:
+  _target_: sam2.modeling.sam2_base.SAM2Base
+  image_encoder:
+    _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
+    scalp: 1
+    trunk:
+      _target_: sam2.modeling.backbones.hieradet.Hiera
+      embed_dim: 96
+      num_heads: 1
+      stages: [1, 2, 7, 2]
+      global_att_blocks: [5, 7, 9]
+      window_pos_embed_bkg_spatial_size: [7, 7]
+    neck:
+      _target_: sam2.modeling.backbones.image_encoder.FpnNeck
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 256
+        normalize: true
+        scale: null
+        temperature: 10000
+      d_model: 256
+      backbone_channel_list: [768, 384, 192, 96]
+      fpn_top_down_levels: [2, 3]  # output level 0 and 1 directly use the backbone features
+      fpn_interp_model: nearest
+
+  memory_attention:
+    _target_: sam2.modeling.memory_attention.MemoryAttention
+    d_model: 256
+    pos_enc_at_input: true
+    layer:
+      _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
+      activation: relu
+      dim_feedforward: 2048
+      dropout: 0.1
+      pos_enc_at_attn: false
+      self_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+      d_model: 256
+      pos_enc_at_cross_attn_keys: true
+      pos_enc_at_cross_attn_queries: false
+      cross_attention:
+        _target_: sam2.modeling.sam.transformer.RoPEAttention
+        rope_theta: 10000.0
+        feat_sizes: [32, 32]
+        rope_k_repeat: True
+        embedding_dim: 256
+        num_heads: 1
+        downsample_rate: 1
+        dropout: 0.1
+        kv_in_dim: 64
+    num_layers: 4
+
+  memory_encoder:
+      _target_: sam2.modeling.memory_encoder.MemoryEncoder
+      out_dim: 64
+      position_encoding:
+        _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
+        num_pos_feats: 64
+        normalize: true
+        scale: null
+        temperature: 10000
+      mask_downsampler:
+        _target_: sam2.modeling.memory_encoder.MaskDownSampler
+        kernel_size: 3
+        stride: 2
+        padding: 1
+      fuser:
+        _target_: sam2.modeling.memory_encoder.Fuser
+        layer:
+          _target_: sam2.modeling.memory_encoder.CXBlock
+          dim: 256
+          kernel_size: 7
+          padding: 3
+          layer_scale_init_value: 1e-6
+          use_dwconv: True  # depth-wise convs
+        num_layers: 2
+
+  num_maskmem: 7
+  image_size: 1024
+  # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
+  # SAM decoder
+  sigmoid_scale_for_mem_enc: 20.0
+  sigmoid_bias_for_mem_enc: -10.0
+  use_mask_input_as_output_without_sam: true
+  # Memory
+  directly_add_no_mem_embed: true
+  # use high-resolution feature map in the SAM mask decoder
+  use_high_res_features_in_sam: true
+  # output 3 masks on the first click on initial conditioning frames
+  multimask_output_in_sam: true
+  # SAM heads
+  iou_prediction_use_sigmoid: True
+  # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+  use_obj_ptrs_in_encoder: true
+  add_tpos_enc_to_obj_ptrs: false
+  only_obj_ptrs_in_the_past_for_eval: true
+  # object occlusion prediction
+  pred_obj_scores: true
+  pred_obj_scores_mlp: true
+  fixed_no_obj_ptr: true
+  # multimask tracking settings
+  multimask_output_for_tracking: true
+  use_multimask_token_for_obj_ptr: true
+  multimask_min_pt_num: 0
+  multimask_max_pt_num: 1
+  use_mlp_for_obj_ptr_proj: true
+  # Compilation flag
+  # HieraT does not currently support compilation, should always be set to False
+  compile_image_encoder: False
diff --git a/sam2/csrc/connected_components.cu b/sam2/csrc/connected_components.cu
new file mode 100644
index 0000000000000000000000000000000000000000..ced21eb32eaaadb818d441c1322b99d1bf068f45
--- /dev/null
+++ b/sam2/csrc/connected_components.cu
@@ -0,0 +1,289 @@
+// Copyright (c) Meta Platforms, Inc. and affiliates.
+// All rights reserved.
+
+// This source code is licensed under the license found in the
+// LICENSE file in the root directory of this source tree.
+
+// adapted from https://github.com/zsef123/Connected_components_PyTorch
+// with license found in the LICENSE_cctorch file in the root directory.
+#include <ATen/cuda/CUDAContext.h>
+#include <cuda.h>
+#include <cuda_runtime.h>
+#include <torch/extension.h>
+#include <torch/script.h>
+#include <vector>
+
+// 2d
+#define BLOCK_ROWS 16
+#define BLOCK_COLS 16
+
+namespace cc2d {
+
+template <typename T>
+__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
+  return (bitmap >> pos) & 1;
+}
+
+__device__ int32_t find(const int32_t* s_buf, int32_t n) {
+  while (s_buf[n] != n)
+    n = s_buf[n];
+  return n;
+}
+
+__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
+  const int32_t id = n;
+  while (s_buf[n] != n) {
+    n = s_buf[n];
+    s_buf[id] = n;
+  }
+  return n;
+}
+
+__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
+  bool done;
+  do {
+    a = find(s_buf, a);
+    b = find(s_buf, b);
+
+    if (a < b) {
+      int32_t old = atomicMin(s_buf + b, a);
+      done = (old == b);
+      b = old;
+    } else if (b < a) {
+      int32_t old = atomicMin(s_buf + a, b);
+      done = (old == a);
+      a = old;
+    } else
+      done = true;
+
+  } while (!done);
+}
+
+__global__ void
+init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row < H && col < W)
+    label[idx] = idx;
+}
+
+__global__ void
+merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  uint32_t P = 0;
+
+  if (img[idx])
+    P |= 0x777;
+  if (row + 1 < H && img[idx + W])
+    P |= 0x777 << 4;
+  if (col + 1 < W && img[idx + 1])
+    P |= 0x777 << 1;
+
+  if (col == 0)
+    P &= 0xEEEE;
+  if (col + 1 >= W)
+    P &= 0x3333;
+  else if (col + 2 >= W)
+    P &= 0x7777;
+
+  if (row == 0)
+    P &= 0xFFF0;
+  if (row + 1 >= H)
+    P &= 0xFF;
+
+  if (P > 0) {
+    // If need check about top-left pixel(if flag the first bit) and hit the
+    // top-left pixel
+    if (hasBit(P, 0) && img[idx - W - 1]) {
+      union_(label, idx, idx - 2 * W - 2); // top left block
+    }
+
+    if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
+      union_(label, idx, idx - 2 * W); // top bottom block
+
+    if (hasBit(P, 3) && img[idx + 2 - W])
+      union_(label, idx, idx - 2 * W + 2); // top right block
+
+    if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
+      union_(label, idx, idx - 2); // just left block
+  }
+}
+
+__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row < H && col < W)
+    find_n_compress(label, idx);
+}
+
+__global__ void final_labeling(
+    const uint8_t* img,
+    int32_t* label,
+    const int32_t W,
+    const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  int32_t y = label[idx] + 1;
+
+  if (img[idx])
+    label[idx] = y;
+  else
+    label[idx] = 0;
+
+  if (col + 1 < W) {
+    if (img[idx + 1])
+      label[idx + 1] = y;
+    else
+      label[idx + 1] = 0;
+
+    if (row + 1 < H) {
+      if (img[idx + W + 1])
+        label[idx + W + 1] = y;
+      else
+        label[idx + W + 1] = 0;
+    }
+  }
+
+  if (row + 1 < H) {
+    if (img[idx + W])
+      label[idx + W] = y;
+    else
+      label[idx + W] = 0;
+  }
+}
+
+__global__ void init_counting(
+    const int32_t* label,
+    int32_t* count_init,
+    const int32_t W,
+    const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  int32_t y = label[idx];
+  if (y > 0) {
+    int32_t count_idx = y - 1;
+    atomicAdd(count_init + count_idx, 1);
+  }
+}
+
+__global__ void final_counting(
+    const int32_t* label,
+    const int32_t* count_init,
+    int32_t* count_final,
+    const int32_t W,
+    const int32_t H) {
+  const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
+  const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
+  const uint32_t idx = row * W + col;
+
+  if (row >= H || col >= W)
+    return;
+
+  int32_t y = label[idx];
+  if (y > 0) {
+    int32_t count_idx = y - 1;
+    count_final[idx] = count_init[count_idx];
+  } else {
+    count_final[idx] = 0;
+  }
+}
+
+} // namespace cc2d
+
+std::vector<torch::Tensor> get_connected_componnets(
+    const torch::Tensor& inputs) {
+  AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
+  AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
+  AT_ASSERTM(
+      inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
+
+  const uint32_t N = inputs.size(0);
+  const uint32_t C = inputs.size(1);
+  const uint32_t H = inputs.size(2);
+  const uint32_t W = inputs.size(3);
+
+  AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
+  AT_ASSERTM((H % 2) == 0, "height must be an even number");
+  AT_ASSERTM((W % 2) == 0, "width must be an even number");
+
+  // label must be uint32_t
+  auto label_options =
+      torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
+  torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
+  torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
+  torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
+
+  dim3 grid = dim3(
+      ((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
+      ((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
+  dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
+  dim3 grid_count =
+      dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
+  dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
+  cudaStream_t stream = at::cuda::getCurrentCUDAStream();
+
+  for (int n = 0; n < N; n++) {
+    uint32_t offset = n * H * W;
+
+    cc2d::init_labeling<<<grid, block, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset, W, H);
+    cc2d::merge<<<grid, block, 0, stream>>>(
+        inputs.data_ptr<uint8_t>() + offset,
+        labels.data_ptr<int32_t>() + offset,
+        W,
+        H);
+    cc2d::compression<<<grid, block, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset, W, H);
+    cc2d::final_labeling<<<grid, block, 0, stream>>>(
+        inputs.data_ptr<uint8_t>() + offset,
+        labels.data_ptr<int32_t>() + offset,
+        W,
+        H);
+
+    // get the counting of each pixel
+    cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset,
+        counts_init.data_ptr<int32_t>() + offset,
+        W,
+        H);
+    cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
+        labels.data_ptr<int32_t>() + offset,
+        counts_init.data_ptr<int32_t>() + offset,
+        counts_final.data_ptr<int32_t>() + offset,
+        W,
+        H);
+  }
+
+  // returned values are [labels, counts]
+  std::vector<torch::Tensor> outputs;
+  outputs.push_back(labels);
+  outputs.push_back(counts_final);
+  return outputs;
+}
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+  m.def(
+      "get_connected_componnets",
+      &get_connected_componnets,
+      "get_connected_componnets");
+}
diff --git a/sam2/modeling/__init__.py b/sam2/modeling/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/modeling/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/modeling/__pycache__/__init__.cpython-311.pyc b/sam2/modeling/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b085341957f3709b01eb2dfb0df17f03f394a3fe
Binary files /dev/null and b/sam2/modeling/__pycache__/__init__.cpython-311.pyc differ
diff --git a/sam2/modeling/__pycache__/memory_attention.cpython-311.pyc b/sam2/modeling/__pycache__/memory_attention.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f2acb8c8fe8fd43e9690ac88a6891d89b2b28cf8
Binary files /dev/null and b/sam2/modeling/__pycache__/memory_attention.cpython-311.pyc differ
diff --git a/sam2/modeling/__pycache__/memory_encoder.cpython-311.pyc b/sam2/modeling/__pycache__/memory_encoder.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..b86f076f762a4881e13883f3e6dd1a249c1a0d2c
Binary files /dev/null and b/sam2/modeling/__pycache__/memory_encoder.cpython-311.pyc differ
diff --git a/sam2/modeling/__pycache__/position_encoding.cpython-311.pyc b/sam2/modeling/__pycache__/position_encoding.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..2331f2874f648a9fab0b282e4b70a610e8fedfeb
Binary files /dev/null and b/sam2/modeling/__pycache__/position_encoding.cpython-311.pyc differ
diff --git a/sam2/modeling/__pycache__/sam2_base.cpython-311.pyc b/sam2/modeling/__pycache__/sam2_base.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d73d8c51879e7ca944114d7c03de6c1691a3b707
Binary files /dev/null and b/sam2/modeling/__pycache__/sam2_base.cpython-311.pyc differ
diff --git a/sam2/modeling/__pycache__/sam2_utils.cpython-311.pyc b/sam2/modeling/__pycache__/sam2_utils.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..8dbd5bc12bc4141a251afcfa4c849935d0ea4fe1
Binary files /dev/null and b/sam2/modeling/__pycache__/sam2_utils.cpython-311.pyc differ
diff --git a/sam2/modeling/backbones/__init__.py b/sam2/modeling/backbones/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/modeling/backbones/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/modeling/backbones/__pycache__/__init__.cpython-311.pyc b/sam2/modeling/backbones/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..81d2677b2f153197365c386135a4f87b32f8ea54
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/__init__.cpython-311.pyc differ
diff --git a/sam2/modeling/backbones/__pycache__/hieradet.cpython-311.pyc b/sam2/modeling/backbones/__pycache__/hieradet.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c9fe1e80d0731353f1583a9b2e6c45ba7d3c489c
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/hieradet.cpython-311.pyc differ
diff --git a/sam2/modeling/backbones/__pycache__/image_encoder.cpython-311.pyc b/sam2/modeling/backbones/__pycache__/image_encoder.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..d319b0d534c0c9bea592f50c12096bfc5f4d38bf
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/image_encoder.cpython-311.pyc differ
diff --git a/sam2/modeling/backbones/__pycache__/utils.cpython-311.pyc b/sam2/modeling/backbones/__pycache__/utils.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..c2fca4b634472f56ace6e0d4add3a8c4ad8cc2e9
Binary files /dev/null and b/sam2/modeling/backbones/__pycache__/utils.cpython-311.pyc differ
diff --git a/sam2/modeling/backbones/hieradet.py b/sam2/modeling/backbones/hieradet.py
new file mode 100644
index 0000000000000000000000000000000000000000..19ac77b61d8e1345a301686d39ef2ab6e4b035fb
--- /dev/null
+++ b/sam2/modeling/backbones/hieradet.py
@@ -0,0 +1,317 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+from functools import partial
+from typing import List, Tuple, Union
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from iopath.common.file_io import g_pathmgr
+
+from sam2.modeling.backbones.utils import (
+    PatchEmbed,
+    window_partition,
+    window_unpartition,
+)
+
+from sam2.modeling.sam2_utils import DropPath, MLP
+
+
+def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
+    if pool is None:
+        return x
+    # (B, H, W, C) -> (B, C, H, W)
+    x = x.permute(0, 3, 1, 2)
+    x = pool(x)
+    # (B, C, H', W') -> (B, H', W', C)
+    x = x.permute(0, 2, 3, 1)
+    if norm:
+        x = norm(x)
+
+    return x
+
+
+class MultiScaleAttention(nn.Module):
+    def __init__(
+        self,
+        dim: int,
+        dim_out: int,
+        num_heads: int,
+        q_pool: nn.Module = None,
+    ):
+        super().__init__()
+
+        self.dim = dim
+        self.dim_out = dim_out
+        self.num_heads = num_heads
+        self.q_pool = q_pool
+        self.qkv = nn.Linear(dim, dim_out * 3)
+        self.proj = nn.Linear(dim_out, dim_out)
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        B, H, W, _ = x.shape
+        # qkv with shape (B, H * W, 3, nHead, C)
+        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
+        # q, k, v with shape (B, H * W, nheads, C)
+        q, k, v = torch.unbind(qkv, 2)
+
+        # Q pooling (for downsample at stage changes)
+        if self.q_pool:
+            q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
+            H, W = q.shape[1:3]  # downsampled shape
+            q = q.reshape(B, H * W, self.num_heads, -1)
+
+        # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
+        x = F.scaled_dot_product_attention(
+            q.transpose(1, 2),
+            k.transpose(1, 2),
+            v.transpose(1, 2),
+        )
+        # Transpose back
+        x = x.transpose(1, 2)
+        x = x.reshape(B, H, W, -1)
+
+        x = self.proj(x)
+
+        return x
+
+
+class MultiScaleBlock(nn.Module):
+    def __init__(
+        self,
+        dim: int,
+        dim_out: int,
+        num_heads: int,
+        mlp_ratio: float = 4.0,
+        drop_path: float = 0.0,
+        norm_layer: Union[nn.Module, str] = "LayerNorm",
+        q_stride: Tuple[int, int] = None,
+        act_layer: nn.Module = nn.GELU,
+        window_size: int = 0,
+    ):
+        super().__init__()
+
+        if isinstance(norm_layer, str):
+            norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
+
+        self.dim = dim
+        self.dim_out = dim_out
+        self.norm1 = norm_layer(dim)
+
+        self.window_size = window_size
+
+        self.pool, self.q_stride = None, q_stride
+        if self.q_stride:
+            self.pool = nn.MaxPool2d(
+                kernel_size=q_stride, stride=q_stride, ceil_mode=False
+            )
+
+        self.attn = MultiScaleAttention(
+            dim,
+            dim_out,
+            num_heads=num_heads,
+            q_pool=self.pool,
+        )
+        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+        self.norm2 = norm_layer(dim_out)
+        self.mlp = MLP(
+            dim_out,
+            int(dim_out * mlp_ratio),
+            dim_out,
+            num_layers=2,
+            activation=act_layer,
+        )
+
+        if dim != dim_out:
+            self.proj = nn.Linear(dim, dim_out)
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        shortcut = x  # B, H, W, C
+        x = self.norm1(x)
+
+        # Skip connection
+        if self.dim != self.dim_out:
+            shortcut = do_pool(self.proj(x), self.pool)
+
+        # Window partition
+        window_size = self.window_size
+        if window_size > 0:
+            H, W = x.shape[1], x.shape[2]
+            x, pad_hw = window_partition(x, window_size)
+
+        # Window Attention + Q Pooling (if stage change)
+        x = self.attn(x)
+        if self.q_stride:
+            # Shapes have changed due to Q pooling
+            window_size = self.window_size // self.q_stride[0]
+            H, W = shortcut.shape[1:3]
+
+            pad_h = (window_size - H % window_size) % window_size
+            pad_w = (window_size - W % window_size) % window_size
+            pad_hw = (H + pad_h, W + pad_w)
+
+        # Reverse window partition
+        if self.window_size > 0:
+            x = window_unpartition(x, window_size, pad_hw, (H, W))
+
+        x = shortcut + self.drop_path(x)
+        # MLP
+        x = x + self.drop_path(self.mlp(self.norm2(x)))
+        return x
+
+
+class Hiera(nn.Module):
+    """
+    Reference: https://arxiv.org/abs/2306.00989
+    """
+
+    def __init__(
+        self,
+        embed_dim: int = 96,  # initial embed dim
+        num_heads: int = 1,  # initial number of heads
+        drop_path_rate: float = 0.0,  # stochastic depth
+        q_pool: int = 3,  # number of q_pool stages
+        q_stride: Tuple[int, int] = (2, 2),  # downsample stride bet. stages
+        stages: Tuple[int, ...] = (2, 3, 16, 3),  # blocks per stage
+        dim_mul: float = 2.0,  # dim_mul factor at stage shift
+        head_mul: float = 2.0,  # head_mul factor at stage shift
+        window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
+        # window size per stage, when not using global att.
+        window_spec: Tuple[int, ...] = (
+            8,
+            4,
+            14,
+            7,
+        ),
+        # global attn in these blocks
+        global_att_blocks: Tuple[int, ...] = (
+            12,
+            16,
+            20,
+        ),
+        weights_path=None,
+        return_interm_layers=True,  # return feats from every stage
+    ):
+        super().__init__()
+
+        assert len(stages) == len(window_spec)
+        self.window_spec = window_spec
+
+        depth = sum(stages)
+        self.q_stride = q_stride
+        self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
+        assert 0 <= q_pool <= len(self.stage_ends[:-1])
+        self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
+        self.return_interm_layers = return_interm_layers
+
+        self.patch_embed = PatchEmbed(
+            embed_dim=embed_dim,
+        )
+        # Which blocks have global att?
+        self.global_att_blocks = global_att_blocks
+
+        # Windowed positional embedding (https://arxiv.org/abs/2311.05613)
+        self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
+        self.pos_embed = nn.Parameter(
+            torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
+        )
+        self.pos_embed_window = nn.Parameter(
+            torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
+        )
+
+        dpr = [
+            x.item() for x in torch.linspace(0, drop_path_rate, depth)
+        ]  # stochastic depth decay rule
+
+        cur_stage = 1
+        self.blocks = nn.ModuleList()
+
+        for i in range(depth):
+            dim_out = embed_dim
+            # lags by a block, so first block of
+            # next stage uses an initial window size
+            # of previous stage and final window size of current stage
+            window_size = self.window_spec[cur_stage - 1]
+
+            if self.global_att_blocks is not None:
+                window_size = 0 if i in self.global_att_blocks else window_size
+
+            if i - 1 in self.stage_ends:
+                dim_out = int(embed_dim * dim_mul)
+                num_heads = int(num_heads * head_mul)
+                cur_stage += 1
+
+            block = MultiScaleBlock(
+                dim=embed_dim,
+                dim_out=dim_out,
+                num_heads=num_heads,
+                drop_path=dpr[i],
+                q_stride=self.q_stride if i in self.q_pool_blocks else None,
+                window_size=window_size,
+            )
+
+            embed_dim = dim_out
+            self.blocks.append(block)
+
+        self.channel_list = (
+            [self.blocks[i].dim_out for i in self.stage_ends[::-1]]
+            if return_interm_layers
+            else [self.blocks[-1].dim_out]
+        )
+
+        if weights_path is not None:
+            with g_pathmgr.open(weights_path, "rb") as f:
+                chkpt = torch.load(f, map_location="cpu")
+            logging.info("loading Hiera", self.load_state_dict(chkpt, strict=False))
+
+    def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
+        h, w = hw
+        window_embed = self.pos_embed_window
+        pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
+        pos_embed = pos_embed + window_embed.tile(
+            [x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
+        )
+        pos_embed = pos_embed.permute(0, 2, 3, 1)
+        return pos_embed
+
+    def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
+        x = self.patch_embed(x)
+        # x: (B, H, W, C)
+
+        # Add pos embed
+        x = x + self._get_pos_embed(x.shape[1:3])
+
+        outputs = []
+        for i, blk in enumerate(self.blocks):
+            x = blk(x)
+            if (i == self.stage_ends[-1]) or (
+                i in self.stage_ends and self.return_interm_layers
+            ):
+                feats = x.permute(0, 3, 1, 2)
+                outputs.append(feats)
+
+        return outputs
+
+    def get_layer_id(self, layer_name):
+        # https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
+        num_layers = self.get_num_layers()
+
+        if layer_name.find("rel_pos") != -1:
+            return num_layers + 1
+        elif layer_name.find("pos_embed") != -1:
+            return 0
+        elif layer_name.find("patch_embed") != -1:
+            return 0
+        elif layer_name.find("blocks") != -1:
+            return int(layer_name.split("blocks")[1].split(".")[1]) + 1
+        else:
+            return num_layers + 1
+
+    def get_num_layers(self) -> int:
+        return len(self.blocks)
diff --git a/sam2/modeling/backbones/image_encoder.py b/sam2/modeling/backbones/image_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..37e9266bc98596e97ca303118c910ed24f6cee2c
--- /dev/null
+++ b/sam2/modeling/backbones/image_encoder.py
@@ -0,0 +1,134 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import List, Optional
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class ImageEncoder(nn.Module):
+    def __init__(
+        self,
+        trunk: nn.Module,
+        neck: nn.Module,
+        scalp: int = 0,
+    ):
+        super().__init__()
+        self.trunk = trunk
+        self.neck = neck
+        self.scalp = scalp
+        assert (
+            self.trunk.channel_list == self.neck.backbone_channel_list
+        ), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
+
+    def forward(self, sample: torch.Tensor):
+        # Forward through backbone
+        features, pos = self.neck(self.trunk(sample))
+        if self.scalp > 0:
+            # Discard the lowest resolution features
+            features, pos = features[: -self.scalp], pos[: -self.scalp]
+
+        src = features[-1]
+        output = {
+            "vision_features": src,
+            "vision_pos_enc": pos,
+            "backbone_fpn": features,
+        }
+        return output
+
+
+class FpnNeck(nn.Module):
+    """
+    A modified variant of Feature Pyramid Network (FPN) neck
+    (we remove output conv and also do bicubic interpolation similar to ViT
+    pos embed interpolation)
+    """
+
+    def __init__(
+        self,
+        position_encoding: nn.Module,
+        d_model: int,
+        backbone_channel_list: List[int],
+        kernel_size: int = 1,
+        stride: int = 1,
+        padding: int = 0,
+        fpn_interp_model: str = "bilinear",
+        fuse_type: str = "sum",
+        fpn_top_down_levels: Optional[List[int]] = None,
+    ):
+        """Initialize the neck
+        :param trunk: the backbone
+        :param position_encoding: the positional encoding to use
+        :param d_model: the dimension of the model
+        :param neck_norm: the normalization to use
+        """
+        super().__init__()
+        self.position_encoding = position_encoding
+        self.convs = nn.ModuleList()
+        self.backbone_channel_list = backbone_channel_list
+        self.d_model = d_model
+        for dim in backbone_channel_list:
+            current = nn.Sequential()
+            current.add_module(
+                "conv",
+                nn.Conv2d(
+                    in_channels=dim,
+                    out_channels=d_model,
+                    kernel_size=kernel_size,
+                    stride=stride,
+                    padding=padding,
+                ),
+            )
+
+            self.convs.append(current)
+        self.fpn_interp_model = fpn_interp_model
+        assert fuse_type in ["sum", "avg"]
+        self.fuse_type = fuse_type
+
+        # levels to have top-down features in its outputs
+        # e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
+        # have top-down propagation, while outputs of level 0 and level 1 have only
+        # lateral features from the same backbone level.
+        if fpn_top_down_levels is None:
+            # default is to have top-down features on all levels
+            fpn_top_down_levels = range(len(self.convs))
+        self.fpn_top_down_levels = list(fpn_top_down_levels)
+
+    def forward(self, xs: List[torch.Tensor]):
+
+        out = [None] * len(self.convs)
+        pos = [None] * len(self.convs)
+        assert len(xs) == len(self.convs)
+        # fpn forward pass
+        # see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
+        prev_features = None
+        # forward in top-down order (from low to high resolution)
+        n = len(self.convs) - 1
+        for i in range(n, -1, -1):
+            x = xs[i]
+            lateral_features = self.convs[n - i](x)
+            if i in self.fpn_top_down_levels and prev_features is not None:
+                top_down_features = F.interpolate(
+                    prev_features.to(dtype=torch.float32),
+                    scale_factor=2.0,
+                    mode=self.fpn_interp_model,
+                    align_corners=(
+                        None if self.fpn_interp_model == "nearest" else False
+                    ),
+                    antialias=False,
+                )
+                prev_features = lateral_features + top_down_features
+                if self.fuse_type == "avg":
+                    prev_features /= 2
+            else:
+                prev_features = lateral_features
+            x_out = prev_features
+            out[i] = x_out
+            pos[i] = self.position_encoding(x_out).to(x_out.dtype)
+
+        return out, pos
diff --git a/sam2/modeling/backbones/utils.py b/sam2/modeling/backbones/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..32d55c7545f064de133a5ff0200ba1ece9b504b7
--- /dev/null
+++ b/sam2/modeling/backbones/utils.py
@@ -0,0 +1,95 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+"""Some utilities for backbones, in particular for windowing"""
+
+from typing import Tuple
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+def window_partition(x, window_size):
+    """
+    Partition into non-overlapping windows with padding if needed.
+    Args:
+        x (tensor): input tokens with [B, H, W, C].
+        window_size (int): window size.
+    Returns:
+        windows: windows after partition with [B * num_windows, window_size, window_size, C].
+        (Hp, Wp): padded height and width before partition
+    """
+    B, H, W, C = x.shape
+
+    pad_h = (window_size - H % window_size) % window_size
+    pad_w = (window_size - W % window_size) % window_size
+    if pad_h > 0 or pad_w > 0:
+        x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
+    Hp, Wp = H + pad_h, W + pad_w
+
+    x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
+    windows = (
+        x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+    )
+    return windows, (Hp, Wp)
+
+
+def window_unpartition(windows, window_size, pad_hw, hw):
+    """
+    Window unpartition into original sequences and removing padding.
+    Args:
+        x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
+        window_size (int): window size.
+        pad_hw (Tuple): padded height and width (Hp, Wp).
+        hw (Tuple): original height and width (H, W) before padding.
+    Returns:
+        x: unpartitioned sequences with [B, H, W, C].
+    """
+    Hp, Wp = pad_hw
+    H, W = hw
+    B = windows.shape[0] // (Hp * Wp // window_size // window_size)
+    x = windows.view(
+        B, Hp // window_size, Wp // window_size, window_size, window_size, -1
+    )
+    x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
+
+    if Hp > H or Wp > W:
+        x = x[:, :H, :W, :].contiguous()
+    return x
+
+
+class PatchEmbed(nn.Module):
+    """
+    Image to Patch Embedding.
+    """
+
+    def __init__(
+        self,
+        kernel_size: Tuple[int, ...] = (7, 7),
+        stride: Tuple[int, ...] = (4, 4),
+        padding: Tuple[int, ...] = (3, 3),
+        in_chans: int = 3,
+        embed_dim: int = 768,
+    ):
+        """
+        Args:
+            kernel_size (Tuple): kernel size of the projection layer.
+            stride (Tuple): stride of the projection layer.
+            padding (Tuple): padding size of the projection layer.
+            in_chans (int): Number of input image channels.
+            embed_dim (int):  embed_dim (int): Patch embedding dimension.
+        """
+        super().__init__()
+        self.proj = nn.Conv2d(
+            in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
+        )
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        x = self.proj(x)
+        # B C H W -> B H W C
+        x = x.permute(0, 2, 3, 1)
+        return x
diff --git a/sam2/modeling/memory_attention.py b/sam2/modeling/memory_attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..0b07f9d87e3d8194ca5e11fc20f01604d591a59d
--- /dev/null
+++ b/sam2/modeling/memory_attention.py
@@ -0,0 +1,169 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Optional
+
+import torch
+from torch import nn, Tensor
+
+from sam2.modeling.sam.transformer import RoPEAttention
+
+from sam2.modeling.sam2_utils import get_activation_fn, get_clones
+
+
+class MemoryAttentionLayer(nn.Module):
+
+    def __init__(
+        self,
+        activation: str,
+        cross_attention: nn.Module,
+        d_model: int,
+        dim_feedforward: int,
+        dropout: float,
+        pos_enc_at_attn: bool,
+        pos_enc_at_cross_attn_keys: bool,
+        pos_enc_at_cross_attn_queries: bool,
+        self_attention: nn.Module,
+    ):
+        super().__init__()
+        self.d_model = d_model
+        self.dim_feedforward = dim_feedforward
+        self.dropout_value = dropout
+        self.self_attn = self_attention
+        self.cross_attn_image = cross_attention
+
+        # Implementation of Feedforward model
+        self.linear1 = nn.Linear(d_model, dim_feedforward)
+        self.dropout = nn.Dropout(dropout)
+        self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+        self.norm1 = nn.LayerNorm(d_model)
+        self.norm2 = nn.LayerNorm(d_model)
+        self.norm3 = nn.LayerNorm(d_model)
+        self.dropout1 = nn.Dropout(dropout)
+        self.dropout2 = nn.Dropout(dropout)
+        self.dropout3 = nn.Dropout(dropout)
+
+        self.activation_str = activation
+        self.activation = get_activation_fn(activation)
+
+        # Where to add pos enc
+        self.pos_enc_at_attn = pos_enc_at_attn
+        self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
+        self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
+
+    def _forward_sa(self, tgt, query_pos):
+        # Self-Attention
+        tgt2 = self.norm1(tgt)
+        q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
+        tgt2 = self.self_attn(q, k, v=tgt2)
+        tgt = tgt + self.dropout1(tgt2)
+        return tgt
+
+    def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
+        kwds = {}
+        if num_k_exclude_rope > 0:
+            assert isinstance(self.cross_attn_image, RoPEAttention)
+            kwds = {"num_k_exclude_rope": num_k_exclude_rope}
+
+        # Cross-Attention
+        tgt2 = self.norm2(tgt)
+        tgt2 = self.cross_attn_image(
+            q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
+            k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
+            v=memory,
+            **kwds,
+        )
+        tgt = tgt + self.dropout2(tgt2)
+        return tgt
+
+    def forward(
+        self,
+        tgt,
+        memory,
+        pos: Optional[Tensor] = None,
+        query_pos: Optional[Tensor] = None,
+        num_k_exclude_rope: int = 0,
+    ) -> torch.Tensor:
+
+        # Self-Attn, Cross-Attn
+        tgt = self._forward_sa(tgt, query_pos)
+        tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
+        # MLP
+        tgt2 = self.norm3(tgt)
+        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
+        tgt = tgt + self.dropout3(tgt2)
+        return tgt
+
+
+class MemoryAttention(nn.Module):
+    def __init__(
+        self,
+        d_model: int,
+        pos_enc_at_input: bool,
+        layer: nn.Module,
+        num_layers: int,
+        batch_first: bool = True,  # Do layers expect batch first input?
+    ):
+        super().__init__()
+        self.d_model = d_model
+        self.layers = get_clones(layer, num_layers)
+        self.num_layers = num_layers
+        self.norm = nn.LayerNorm(d_model)
+        self.pos_enc_at_input = pos_enc_at_input
+        self.batch_first = batch_first
+
+    def forward(
+        self,
+        curr: torch.Tensor,  # self-attention inputs
+        memory: torch.Tensor,  # cross-attention inputs
+        curr_pos: Optional[Tensor] = None,  # pos_enc for self-attention inputs
+        memory_pos: Optional[Tensor] = None,  # pos_enc for cross-attention inputs
+        num_obj_ptr_tokens: int = 0,  # number of object pointer *tokens*
+    ):
+        if isinstance(curr, list):
+            assert isinstance(curr_pos, list)
+            assert len(curr) == len(curr_pos) == 1
+            curr, curr_pos = (
+                curr[0],
+                curr_pos[0],
+            )
+
+        assert (
+            curr.shape[1] == memory.shape[1]
+        ), "Batch size must be the same for curr and memory"
+
+        output = curr
+        if self.pos_enc_at_input and curr_pos is not None:
+            output = output + 0.1 * curr_pos
+
+        if self.batch_first:
+            # Convert to batch first
+            output = output.transpose(0, 1)
+            curr_pos = curr_pos.transpose(0, 1)
+            memory = memory.transpose(0, 1)
+            memory_pos = memory_pos.transpose(0, 1)
+
+        for layer in self.layers:
+            kwds = {}
+            if isinstance(layer.cross_attn_image, RoPEAttention):
+                kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
+
+            output = layer(
+                tgt=output,
+                memory=memory,
+                pos=memory_pos,
+                query_pos=curr_pos,
+                **kwds,
+            )
+        normed_output = self.norm(output)
+
+        if self.batch_first:
+            # Convert back to seq first
+            normed_output = normed_output.transpose(0, 1)
+            curr_pos = curr_pos.transpose(0, 1)
+
+        return normed_output
diff --git a/sam2/modeling/memory_encoder.py b/sam2/modeling/memory_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..f60202dfaba87232c3870fb2101b5322a119d985
--- /dev/null
+++ b/sam2/modeling/memory_encoder.py
@@ -0,0 +1,181 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from typing import Tuple
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
+
+
+class MaskDownSampler(nn.Module):
+    """
+    Progressively downsample a mask by total_stride, each time by stride.
+    Note that LayerNorm is applied per *token*, like in ViT.
+
+    With each downsample (by a factor stride**2), channel capacity increases by the same factor.
+    In the end, we linearly project to embed_dim channels.
+    """
+
+    def __init__(
+        self,
+        embed_dim=256,
+        kernel_size=4,
+        stride=4,
+        padding=0,
+        total_stride=16,
+        activation=nn.GELU,
+    ):
+        super().__init__()
+        num_layers = int(math.log2(total_stride) // math.log2(stride))
+        assert stride**num_layers == total_stride
+        self.encoder = nn.Sequential()
+        mask_in_chans, mask_out_chans = 1, 1
+        for _ in range(num_layers):
+            mask_out_chans = mask_in_chans * (stride**2)
+            self.encoder.append(
+                nn.Conv2d(
+                    mask_in_chans,
+                    mask_out_chans,
+                    kernel_size=kernel_size,
+                    stride=stride,
+                    padding=padding,
+                )
+            )
+            self.encoder.append(LayerNorm2d(mask_out_chans))
+            self.encoder.append(activation())
+            mask_in_chans = mask_out_chans
+
+        self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
+
+    def forward(self, x):
+        return self.encoder(x)
+
+
+# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
+class CXBlock(nn.Module):
+    r"""ConvNeXt Block. There are two equivalent implementations:
+    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
+    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
+    We use (2) as we find it slightly faster in PyTorch
+
+    Args:
+        dim (int): Number of input channels.
+        drop_path (float): Stochastic depth rate. Default: 0.0
+        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
+    """
+
+    def __init__(
+        self,
+        dim,
+        kernel_size=7,
+        padding=3,
+        drop_path=0.0,
+        layer_scale_init_value=1e-6,
+        use_dwconv=True,
+    ):
+        super().__init__()
+        self.dwconv = nn.Conv2d(
+            dim,
+            dim,
+            kernel_size=kernel_size,
+            padding=padding,
+            groups=dim if use_dwconv else 1,
+        )  # depthwise conv
+        self.norm = LayerNorm2d(dim, eps=1e-6)
+        self.pwconv1 = nn.Linear(
+            dim, 4 * dim
+        )  # pointwise/1x1 convs, implemented with linear layers
+        self.act = nn.GELU()
+        self.pwconv2 = nn.Linear(4 * dim, dim)
+        self.gamma = (
+            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
+            if layer_scale_init_value > 0
+            else None
+        )
+        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
+
+    def forward(self, x):
+        input = x
+        x = self.dwconv(x)
+        x = self.norm(x)
+        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
+        x = self.pwconv1(x)
+        x = self.act(x)
+        x = self.pwconv2(x)
+        if self.gamma is not None:
+            x = self.gamma * x
+        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)
+
+        x = input + self.drop_path(x)
+        return x
+
+
+class Fuser(nn.Module):
+    def __init__(self, layer, num_layers, dim=None, input_projection=False):
+        super().__init__()
+        self.proj = nn.Identity()
+        self.layers = get_clones(layer, num_layers)
+
+        if input_projection:
+            assert dim is not None
+            self.proj = nn.Conv2d(dim, dim, kernel_size=1)
+
+    def forward(self, x):
+        # normally x: (N, C, H, W)
+        x = self.proj(x)
+        for layer in self.layers:
+            x = layer(x)
+        return x
+
+
+class MemoryEncoder(nn.Module):
+    def __init__(
+        self,
+        out_dim,
+        mask_downsampler,
+        fuser,
+        position_encoding,
+        in_dim=256,  # in_dim of pix_feats
+    ):
+        super().__init__()
+
+        self.mask_downsampler = mask_downsampler
+
+        self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
+        self.fuser = fuser
+        self.position_encoding = position_encoding
+        self.out_proj = nn.Identity()
+        if out_dim != in_dim:
+            self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
+
+    def forward(
+        self,
+        pix_feat: torch.Tensor,
+        masks: torch.Tensor,
+        skip_mask_sigmoid: bool = False,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        ## Process masks
+        # sigmoid, so that less domain shift from gt masks which are bool
+        if not skip_mask_sigmoid:
+            masks = F.sigmoid(masks)
+        masks = self.mask_downsampler(masks)
+
+        ## Fuse pix_feats and downsampled masks
+        # in case the visual features are on CPU, cast them to CUDA
+        pix_feat = pix_feat.to(masks.device)
+
+        x = self.pix_feat_proj(pix_feat)
+        x = x + masks
+        x = self.fuser(x)
+        x = self.out_proj(x)
+
+        pos = self.position_encoding(x).to(x.dtype)
+
+        return {"vision_features": x, "vision_pos_enc": [pos]}
diff --git a/sam2/modeling/position_encoding.py b/sam2/modeling/position_encoding.py
new file mode 100644
index 0000000000000000000000000000000000000000..52ac22674d5d4fdd9e83b6bdf034bff56d04bc0d
--- /dev/null
+++ b/sam2/modeling/position_encoding.py
@@ -0,0 +1,221 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from typing import Any, Optional, Tuple
+
+import numpy as np
+
+import torch
+from torch import nn
+
+
+class PositionEmbeddingSine(nn.Module):
+    """
+    This is a more standard version of the position embedding, very similar to the one
+    used by the Attention Is All You Need paper, generalized to work on images.
+    """
+
+    def __init__(
+        self,
+        num_pos_feats,
+        temperature: int = 10000,
+        normalize: bool = True,
+        scale: Optional[float] = None,
+    ):
+        super().__init__()
+        assert num_pos_feats % 2 == 0, "Expecting even model width"
+        self.num_pos_feats = num_pos_feats // 2
+        self.temperature = temperature
+        self.normalize = normalize
+        if scale is not None and normalize is False:
+            raise ValueError("normalize should be True if scale is passed")
+        if scale is None:
+            scale = 2 * math.pi
+        self.scale = scale
+
+        self.cache = {}
+
+    def _encode_xy(self, x, y):
+        # The positions are expected to be normalized
+        assert len(x) == len(y) and x.ndim == y.ndim == 1
+        x_embed = x * self.scale
+        y_embed = y * self.scale
+
+        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+        pos_x = x_embed[:, None] / dim_t
+        pos_y = y_embed[:, None] / dim_t
+        pos_x = torch.stack(
+            (pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
+        ).flatten(1)
+        pos_y = torch.stack(
+            (pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
+        ).flatten(1)
+        return pos_x, pos_y
+
+    @torch.no_grad()
+    def encode_boxes(self, x, y, w, h):
+        pos_x, pos_y = self._encode_xy(x, y)
+        pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
+        return pos
+
+    encode = encode_boxes  # Backwards compatibility
+
+    @torch.no_grad()
+    def encode_points(self, x, y, labels):
+        (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
+        assert bx == by and nx == ny and bx == bl and nx == nl
+        pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
+        pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
+        pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
+        return pos
+
+    @torch.no_grad()
+    def forward(self, x: torch.Tensor):
+        cache_key = (x.shape[-2], x.shape[-1])
+        if cache_key in self.cache:
+            return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
+        y_embed = (
+            torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
+            .view(1, -1, 1)
+            .repeat(x.shape[0], 1, x.shape[-1])
+        )
+        x_embed = (
+            torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
+            .view(1, 1, -1)
+            .repeat(x.shape[0], x.shape[-2], 1)
+        )
+
+        if self.normalize:
+            eps = 1e-6
+            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+        pos_x = x_embed[:, :, :, None] / dim_t
+        pos_y = y_embed[:, :, :, None] / dim_t
+        pos_x = torch.stack(
+            (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
+        ).flatten(3)
+        pos_y = torch.stack(
+            (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
+        ).flatten(3)
+        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+        self.cache[cache_key] = pos[0]
+        return pos
+
+
+class PositionEmbeddingRandom(nn.Module):
+    """
+    Positional encoding using random spatial frequencies.
+    """
+
+    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
+        super().__init__()
+        if scale is None or scale <= 0.0:
+            scale = 1.0
+        self.register_buffer(
+            "positional_encoding_gaussian_matrix",
+            scale * torch.randn((2, num_pos_feats)),
+        )
+
+    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
+        """Positionally encode points that are normalized to [0,1]."""
+        # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
+        coords = 2 * coords - 1
+        coords = coords @ self.positional_encoding_gaussian_matrix
+        coords = 2 * np.pi * coords
+        # outputs d_1 x ... x d_n x C shape
+        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
+
+    def forward(self, size: Tuple[int, int]) -> torch.Tensor:
+        """Generate positional encoding for a grid of the specified size."""
+        h, w = size
+        device: Any = self.positional_encoding_gaussian_matrix.device
+        grid = torch.ones((h, w), device=device, dtype=torch.float32)
+        y_embed = grid.cumsum(dim=0) - 0.5
+        x_embed = grid.cumsum(dim=1) - 0.5
+        y_embed = y_embed / h
+        x_embed = x_embed / w
+
+        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
+        return pe.permute(2, 0, 1)  # C x H x W
+
+    def forward_with_coords(
+        self, coords_input: torch.Tensor, image_size: Tuple[int, int]
+    ) -> torch.Tensor:
+        """Positionally encode points that are not normalized to [0,1]."""
+        coords = coords_input.clone()
+        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
+        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
+        return self._pe_encoding(coords.to(torch.float))  # B x N x C
+
+
+# Rotary Positional Encoding, adapted from:
+# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
+# 2. https://github.com/naver-ai/rope-vit
+# 3. https://github.com/lucidrains/rotary-embedding-torch
+
+
+def init_t_xy(end_x: int, end_y: int):
+    t = torch.arange(end_x * end_y, dtype=torch.float32)
+    t_x = (t % end_x).float()
+    t_y = torch.div(t, end_x, rounding_mode="floor").float()
+    return t_x, t_y
+
+
+def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
+    freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
+    freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
+
+    t_x, t_y = init_t_xy(end_x, end_y)
+    freqs_x = torch.outer(t_x, freqs_x)
+    freqs_y = torch.outer(t_y, freqs_y)
+    freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
+    freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
+    return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
+
+
+def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
+    ndim = x.ndim
+    assert 0 <= 1 < ndim
+    assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
+    shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
+    return freqs_cis.view(*shape)
+
+
+def apply_rotary_enc(
+    xq: torch.Tensor,
+    xk: torch.Tensor,
+    freqs_cis: torch.Tensor,
+    repeat_freqs_k: bool = False,
+):
+    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
+    xk_ = (
+        torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
+        if xk.shape[-2] != 0
+        else None
+    )
+    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
+    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
+    if xk_ is None:
+        # no keys to rotate, due to dropout
+        return xq_out.type_as(xq).to(xq.device), xk
+    # repeat freqs along seq_len dim to match k seq_len
+    if repeat_freqs_k:
+        r = xk_.shape[-2] // xq_.shape[-2]
+        if freqs_cis.is_cuda:
+            freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
+        else:
+            # torch.repeat on complex numbers may not be supported on non-CUDA devices
+            # (freqs_cis has 4 dims and we repeat on dim 2) so we use expand + flatten
+            freqs_cis = freqs_cis.unsqueeze(2).expand(-1, -1, r, -1, -1).flatten(2, 3)
+    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
+    return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
diff --git a/sam2/modeling/sam/__init__.py b/sam2/modeling/sam/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/modeling/sam/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/modeling/sam/__pycache__/__init__.cpython-311.pyc b/sam2/modeling/sam/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..86fe6e81605fee0ac58953ca0afe29a87c2093f1
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/__init__.cpython-311.pyc differ
diff --git a/sam2/modeling/sam/__pycache__/mask_decoder.cpython-311.pyc b/sam2/modeling/sam/__pycache__/mask_decoder.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..1156893d0d7b754c0ccba204aa45e1530dcfac3e
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/mask_decoder.cpython-311.pyc differ
diff --git a/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-311.pyc b/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..18fe45445517b8c34c4f67970a005a97c21a38df
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/prompt_encoder.cpython-311.pyc differ
diff --git a/sam2/modeling/sam/__pycache__/transformer.cpython-311.pyc b/sam2/modeling/sam/__pycache__/transformer.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..bbf1212c7720b3409d538a437b97bffefd900e19
Binary files /dev/null and b/sam2/modeling/sam/__pycache__/transformer.cpython-311.pyc differ
diff --git a/sam2/modeling/sam/mask_decoder.py b/sam2/modeling/sam/mask_decoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..9bebc0366b2703ffcb80a44bfd19cce8339b4fed
--- /dev/null
+++ b/sam2/modeling/sam/mask_decoder.py
@@ -0,0 +1,295 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import List, Optional, Tuple, Type
+
+import torch
+from torch import nn
+
+from sam2.modeling.sam2_utils import LayerNorm2d, MLP
+
+
+class MaskDecoder(nn.Module):
+    def __init__(
+        self,
+        *,
+        transformer_dim: int,
+        transformer: nn.Module,
+        num_multimask_outputs: int = 3,
+        activation: Type[nn.Module] = nn.GELU,
+        iou_head_depth: int = 3,
+        iou_head_hidden_dim: int = 256,
+        use_high_res_features: bool = False,
+        iou_prediction_use_sigmoid=False,
+        dynamic_multimask_via_stability=False,
+        dynamic_multimask_stability_delta=0.05,
+        dynamic_multimask_stability_thresh=0.98,
+        pred_obj_scores: bool = False,
+        pred_obj_scores_mlp: bool = False,
+        use_multimask_token_for_obj_ptr: bool = False,
+    ) -> None:
+        """
+        Predicts masks given an image and prompt embeddings, using a
+        transformer architecture.
+
+        Arguments:
+          transformer_dim (int): the channel dimension of the transformer
+          transformer (nn.Module): the transformer used to predict masks
+          num_multimask_outputs (int): the number of masks to predict
+            when disambiguating masks
+          activation (nn.Module): the type of activation to use when
+            upscaling masks
+          iou_head_depth (int): the depth of the MLP used to predict
+            mask quality
+          iou_head_hidden_dim (int): the hidden dimension of the MLP
+            used to predict mask quality
+        """
+        super().__init__()
+        self.transformer_dim = transformer_dim
+        self.transformer = transformer
+
+        self.num_multimask_outputs = num_multimask_outputs
+
+        self.iou_token = nn.Embedding(1, transformer_dim)
+        self.num_mask_tokens = num_multimask_outputs + 1
+        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
+
+        self.pred_obj_scores = pred_obj_scores
+        if self.pred_obj_scores:
+            self.obj_score_token = nn.Embedding(1, transformer_dim)
+        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
+
+        self.output_upscaling = nn.Sequential(
+            nn.ConvTranspose2d(
+                transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
+            ),
+            LayerNorm2d(transformer_dim // 4),
+            activation(),
+            nn.ConvTranspose2d(
+                transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
+            ),
+            activation(),
+        )
+        self.use_high_res_features = use_high_res_features
+        if use_high_res_features:
+            self.conv_s0 = nn.Conv2d(
+                transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
+            )
+            self.conv_s1 = nn.Conv2d(
+                transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
+            )
+
+        self.output_hypernetworks_mlps = nn.ModuleList(
+            [
+                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
+                for i in range(self.num_mask_tokens)
+            ]
+        )
+
+        self.iou_prediction_head = MLP(
+            transformer_dim,
+            iou_head_hidden_dim,
+            self.num_mask_tokens,
+            iou_head_depth,
+            sigmoid_output=iou_prediction_use_sigmoid,
+        )
+        if self.pred_obj_scores:
+            self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
+            if pred_obj_scores_mlp:
+                self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
+
+        # When outputting a single mask, optionally we can dynamically fall back to the best
+        # multimask output token if the single mask output token gives low stability scores.
+        self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
+        self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
+        self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
+
+    def forward(
+        self,
+        image_embeddings: torch.Tensor,
+        image_pe: torch.Tensor,
+        sparse_prompt_embeddings: torch.Tensor,
+        dense_prompt_embeddings: torch.Tensor,
+        multimask_output: bool,
+        repeat_image: bool,
+        high_res_features: Optional[List[torch.Tensor]] = None,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Predict masks given image and prompt embeddings.
+
+        Arguments:
+          image_embeddings (torch.Tensor): the embeddings from the image encoder
+          image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
+          sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
+          dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
+          multimask_output (bool): Whether to return multiple masks or a single
+            mask.
+
+        Returns:
+          torch.Tensor: batched predicted masks
+          torch.Tensor: batched predictions of mask quality
+          torch.Tensor: batched SAM token for mask output
+        """
+        masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
+            image_embeddings=image_embeddings,
+            image_pe=image_pe,
+            sparse_prompt_embeddings=sparse_prompt_embeddings,
+            dense_prompt_embeddings=dense_prompt_embeddings,
+            repeat_image=repeat_image,
+            high_res_features=high_res_features,
+        )
+
+        # Select the correct mask or masks for output
+        if multimask_output:
+            masks = masks[:, 1:, :, :]
+            iou_pred = iou_pred[:, 1:]
+        elif self.dynamic_multimask_via_stability and not self.training:
+            masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
+        else:
+            masks = masks[:, 0:1, :, :]
+            iou_pred = iou_pred[:, 0:1]
+
+        if multimask_output and self.use_multimask_token_for_obj_ptr:
+            sam_tokens_out = mask_tokens_out[:, 1:]  # [b, 3, c] shape
+        else:
+            # Take the mask output token. Here we *always* use the token for single mask output.
+            # At test time, even if we track after 1-click (and using multimask_output=True),
+            # we still take the single mask token here. The rationale is that we always track
+            # after multiple clicks during training, so the past tokens seen during training
+            # are always the single mask token (and we'll let it be the object-memory token).
+            sam_tokens_out = mask_tokens_out[:, 0:1]  # [b, 1, c] shape
+
+        # Prepare output
+        return masks, iou_pred, sam_tokens_out, object_score_logits
+
+    def predict_masks(
+        self,
+        image_embeddings: torch.Tensor,
+        image_pe: torch.Tensor,
+        sparse_prompt_embeddings: torch.Tensor,
+        dense_prompt_embeddings: torch.Tensor,
+        repeat_image: bool,
+        high_res_features: Optional[List[torch.Tensor]] = None,
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """Predicts masks. See 'forward' for more details."""
+        # Concatenate output tokens
+        s = 0
+        if self.pred_obj_scores:
+            output_tokens = torch.cat(
+                [
+                    self.obj_score_token.weight,
+                    self.iou_token.weight,
+                    self.mask_tokens.weight,
+                ],
+                dim=0,
+            )
+            s = 1
+        else:
+            output_tokens = torch.cat(
+                [self.iou_token.weight, self.mask_tokens.weight], dim=0
+            )
+        output_tokens = output_tokens.unsqueeze(0).expand(
+            sparse_prompt_embeddings.size(0), -1, -1
+        )
+        tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
+
+        # Expand per-image data in batch direction to be per-mask
+        if repeat_image:
+            src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
+        else:
+            assert image_embeddings.shape[0] == tokens.shape[0]
+            src = image_embeddings
+        src = src + dense_prompt_embeddings
+        assert (
+            image_pe.size(0) == 1
+        ), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
+        pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
+        b, c, h, w = src.shape
+
+        # Run the transformer
+        hs, src = self.transformer(src, pos_src, tokens)
+        iou_token_out = hs[:, s, :]
+        mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
+
+        # Upscale mask embeddings and predict masks using the mask tokens
+        src = src.transpose(1, 2).view(b, c, h, w)
+        if not self.use_high_res_features:
+            upscaled_embedding = self.output_upscaling(src)
+        else:
+            dc1, ln1, act1, dc2, act2 = self.output_upscaling
+            feat_s0, feat_s1 = high_res_features
+            upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
+            upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
+
+        hyper_in_list: List[torch.Tensor] = []
+        for i in range(self.num_mask_tokens):
+            hyper_in_list.append(
+                self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
+            )
+        hyper_in = torch.stack(hyper_in_list, dim=1)
+        b, c, h, w = upscaled_embedding.shape
+        masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
+
+        # Generate mask quality predictions
+        iou_pred = self.iou_prediction_head(iou_token_out)
+        if self.pred_obj_scores:
+            assert s == 1
+            object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
+        else:
+            # Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
+            object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
+
+        return masks, iou_pred, mask_tokens_out, object_score_logits
+
+    def _get_stability_scores(self, mask_logits):
+        """
+        Compute stability scores of the mask logits based on the IoU between upper and
+        lower thresholds.
+        """
+        mask_logits = mask_logits.flatten(-2)
+        stability_delta = self.dynamic_multimask_stability_delta
+        area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
+        area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
+        stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
+        return stability_scores
+
+    def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
+        """
+        When outputting a single mask, if the stability score from the current single-mask
+        output (based on output token 0) falls below a threshold, we instead select from
+        multi-mask outputs (based on output token 1~3) the mask with the highest predicted
+        IoU score. This is intended to ensure a valid mask for both clicking and tracking.
+        """
+        # The best mask from multimask output tokens (1~3)
+        multimask_logits = all_mask_logits[:, 1:, :, :]
+        multimask_iou_scores = all_iou_scores[:, 1:]
+        best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
+        batch_inds = torch.arange(
+            multimask_iou_scores.size(0), device=all_iou_scores.device
+        )
+        best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
+        best_multimask_logits = best_multimask_logits.unsqueeze(1)
+        best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
+        best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
+
+        # The mask from singlemask output token 0 and its stability score
+        singlemask_logits = all_mask_logits[:, 0:1, :, :]
+        singlemask_iou_scores = all_iou_scores[:, 0:1]
+        stability_scores = self._get_stability_scores(singlemask_logits)
+        is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
+
+        # Dynamically fall back to best multimask output upon low stability scores.
+        mask_logits_out = torch.where(
+            is_stable[..., None, None].expand_as(singlemask_logits),
+            singlemask_logits,
+            best_multimask_logits,
+        )
+        iou_scores_out = torch.where(
+            is_stable.expand_as(singlemask_iou_scores),
+            singlemask_iou_scores,
+            best_multimask_iou_scores,
+        )
+        return mask_logits_out, iou_scores_out
diff --git a/sam2/modeling/sam/prompt_encoder.py b/sam2/modeling/sam/prompt_encoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..6b3bbb95be0aea9c88f49f586ac959a9fda1b18b
--- /dev/null
+++ b/sam2/modeling/sam/prompt_encoder.py
@@ -0,0 +1,182 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+from typing import Optional, Tuple, Type
+
+import torch
+from torch import nn
+
+from sam2.modeling.position_encoding import PositionEmbeddingRandom
+
+from sam2.modeling.sam2_utils import LayerNorm2d
+
+
+class PromptEncoder(nn.Module):
+    def __init__(
+        self,
+        embed_dim: int,
+        image_embedding_size: Tuple[int, int],
+        input_image_size: Tuple[int, int],
+        mask_in_chans: int,
+        activation: Type[nn.Module] = nn.GELU,
+    ) -> None:
+        """
+        Encodes prompts for input to SAM's mask decoder.
+
+        Arguments:
+          embed_dim (int): The prompts' embedding dimension
+          image_embedding_size (tuple(int, int)): The spatial size of the
+            image embedding, as (H, W).
+          input_image_size (int): The padded size of the image as input
+            to the image encoder, as (H, W).
+          mask_in_chans (int): The number of hidden channels used for
+            encoding input masks.
+          activation (nn.Module): The activation to use when encoding
+            input masks.
+        """
+        super().__init__()
+        self.embed_dim = embed_dim
+        self.input_image_size = input_image_size
+        self.image_embedding_size = image_embedding_size
+        self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
+
+        self.num_point_embeddings: int = 4  # pos/neg point + 2 box corners
+        point_embeddings = [
+            nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
+        ]
+        self.point_embeddings = nn.ModuleList(point_embeddings)
+        self.not_a_point_embed = nn.Embedding(1, embed_dim)
+
+        self.mask_input_size = (
+            4 * image_embedding_size[0],
+            4 * image_embedding_size[1],
+        )
+        self.mask_downscaling = nn.Sequential(
+            nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
+            LayerNorm2d(mask_in_chans // 4),
+            activation(),
+            nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
+            LayerNorm2d(mask_in_chans),
+            activation(),
+            nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
+        )
+        self.no_mask_embed = nn.Embedding(1, embed_dim)
+
+    def get_dense_pe(self) -> torch.Tensor:
+        """
+        Returns the positional encoding used to encode point prompts,
+        applied to a dense set of points the shape of the image encoding.
+
+        Returns:
+          torch.Tensor: Positional encoding with shape
+            1x(embed_dim)x(embedding_h)x(embedding_w)
+        """
+        return self.pe_layer(self.image_embedding_size).unsqueeze(0)
+
+    def _embed_points(
+        self,
+        points: torch.Tensor,
+        labels: torch.Tensor,
+        pad: bool,
+    ) -> torch.Tensor:
+        """Embeds point prompts."""
+        points = points + 0.5  # Shift to center of pixel
+        if pad:
+            padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
+            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
+            points = torch.cat([points, padding_point], dim=1)
+            labels = torch.cat([labels, padding_label], dim=1)
+        point_embedding = self.pe_layer.forward_with_coords(
+            points, self.input_image_size
+        )
+        point_embedding[labels == -1] = 0.0
+        point_embedding[labels == -1] += self.not_a_point_embed.weight
+        point_embedding[labels == 0] += self.point_embeddings[0].weight
+        point_embedding[labels == 1] += self.point_embeddings[1].weight
+        point_embedding[labels == 2] += self.point_embeddings[2].weight
+        point_embedding[labels == 3] += self.point_embeddings[3].weight
+        return point_embedding
+
+    def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
+        """Embeds box prompts."""
+        boxes = boxes + 0.5  # Shift to center of pixel
+        coords = boxes.reshape(-1, 2, 2)
+        corner_embedding = self.pe_layer.forward_with_coords(
+            coords, self.input_image_size
+        )
+        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
+        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
+        return corner_embedding
+
+    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
+        """Embeds mask inputs."""
+        mask_embedding = self.mask_downscaling(masks)
+        return mask_embedding
+
+    def _get_batch_size(
+        self,
+        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
+        boxes: Optional[torch.Tensor],
+        masks: Optional[torch.Tensor],
+    ) -> int:
+        """
+        Gets the batch size of the output given the batch size of the input prompts.
+        """
+        if points is not None:
+            return points[0].shape[0]
+        elif boxes is not None:
+            return boxes.shape[0]
+        elif masks is not None:
+            return masks.shape[0]
+        else:
+            return 1
+
+    def _get_device(self) -> torch.device:
+        return self.point_embeddings[0].weight.device
+
+    def forward(
+        self,
+        points: Optional[Tuple[torch.Tensor, torch.Tensor]],
+        boxes: Optional[torch.Tensor],
+        masks: Optional[torch.Tensor],
+    ) -> Tuple[torch.Tensor, torch.Tensor]:
+        """
+        Embeds different types of prompts, returning both sparse and dense
+        embeddings.
+
+        Arguments:
+          points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
+            and labels to embed.
+          boxes (torch.Tensor or none): boxes to embed
+          masks (torch.Tensor or none): masks to embed
+
+        Returns:
+          torch.Tensor: sparse embeddings for the points and boxes, with shape
+            BxNx(embed_dim), where N is determined by the number of input points
+            and boxes.
+          torch.Tensor: dense embeddings for the masks, in the shape
+            Bx(embed_dim)x(embed_H)x(embed_W)
+        """
+        bs = self._get_batch_size(points, boxes, masks)
+        sparse_embeddings = torch.empty(
+            (bs, 0, self.embed_dim), device=self._get_device()
+        )
+        if points is not None:
+            coords, labels = points
+            point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
+            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
+        if boxes is not None:
+            box_embeddings = self._embed_boxes(boxes)
+            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
+
+        if masks is not None:
+            dense_embeddings = self._embed_masks(masks)
+        else:
+            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
+                bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
+            )
+
+        return sparse_embeddings, dense_embeddings
diff --git a/sam2/modeling/sam/transformer.py b/sam2/modeling/sam/transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..b5b6fa2f87e85a7f222fb2ba0b661734dc57a08a
--- /dev/null
+++ b/sam2/modeling/sam/transformer.py
@@ -0,0 +1,360 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import contextlib
+import math
+import warnings
+from functools import partial
+from typing import Tuple, Type
+
+import torch
+import torch.nn.functional as F
+from torch import nn, Tensor
+
+from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
+from sam2.modeling.sam2_utils import MLP
+from sam2.utils.misc import get_sdpa_settings
+
+warnings.simplefilter(action="ignore", category=FutureWarning)
+# Check whether Flash Attention is available (and use it by default)
+OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
+# A fallback setting to allow all available kernels if Flash Attention fails
+ALLOW_ALL_KERNELS = False
+
+
+def sdp_kernel_context(dropout_p):
+    """
+    Get the context for the attention scaled dot-product kernel. We use Flash Attention
+    by default, but fall back to all available kernels if Flash Attention fails.
+    """
+    if ALLOW_ALL_KERNELS:
+        return contextlib.nullcontext()
+
+    return torch.backends.cuda.sdp_kernel(
+        enable_flash=USE_FLASH_ATTN,
+        # if Flash attention kernel is off, then math kernel needs to be enabled
+        enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
+        enable_mem_efficient=OLD_GPU,
+    )
+
+
+class TwoWayTransformer(nn.Module):
+    def __init__(
+        self,
+        depth: int,
+        embedding_dim: int,
+        num_heads: int,
+        mlp_dim: int,
+        activation: Type[nn.Module] = nn.ReLU,
+        attention_downsample_rate: int = 2,
+    ) -> None:
+        """
+        A transformer decoder that attends to an input image using
+        queries whose positional embedding is supplied.
+
+        Args:
+          depth (int): number of layers in the transformer
+          embedding_dim (int): the channel dimension for the input embeddings
+          num_heads (int): the number of heads for multihead attention. Must
+            divide embedding_dim
+          mlp_dim (int): the channel dimension internal to the MLP block
+          activation (nn.Module): the activation to use in the MLP block
+        """
+        super().__init__()
+        self.depth = depth
+        self.embedding_dim = embedding_dim
+        self.num_heads = num_heads
+        self.mlp_dim = mlp_dim
+        self.layers = nn.ModuleList()
+
+        for i in range(depth):
+            self.layers.append(
+                TwoWayAttentionBlock(
+                    embedding_dim=embedding_dim,
+                    num_heads=num_heads,
+                    mlp_dim=mlp_dim,
+                    activation=activation,
+                    attention_downsample_rate=attention_downsample_rate,
+                    skip_first_layer_pe=(i == 0),
+                )
+            )
+
+        self.final_attn_token_to_image = Attention(
+            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+        )
+        self.norm_final_attn = nn.LayerNorm(embedding_dim)
+
+    def forward(
+        self,
+        image_embedding: Tensor,
+        image_pe: Tensor,
+        point_embedding: Tensor,
+    ) -> Tuple[Tensor, Tensor]:
+        """
+        Args:
+          image_embedding (torch.Tensor): image to attend to. Should be shape
+            B x embedding_dim x h x w for any h and w.
+          image_pe (torch.Tensor): the positional encoding to add to the image. Must
+            have the same shape as image_embedding.
+          point_embedding (torch.Tensor): the embedding to add to the query points.
+            Must have shape B x N_points x embedding_dim for any N_points.
+
+        Returns:
+          torch.Tensor: the processed point_embedding
+          torch.Tensor: the processed image_embedding
+        """
+        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
+        bs, c, h, w = image_embedding.shape
+        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
+        image_pe = image_pe.flatten(2).permute(0, 2, 1)
+
+        # Prepare queries
+        queries = point_embedding
+        keys = image_embedding
+
+        # Apply transformer blocks and final layernorm
+        for layer in self.layers:
+            queries, keys = layer(
+                queries=queries,
+                keys=keys,
+                query_pe=point_embedding,
+                key_pe=image_pe,
+            )
+
+        # Apply the final attention layer from the points to the image
+        q = queries + point_embedding
+        k = keys + image_pe
+        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
+        queries = queries + attn_out
+        queries = self.norm_final_attn(queries)
+
+        return queries, keys
+
+
+class TwoWayAttentionBlock(nn.Module):
+    def __init__(
+        self,
+        embedding_dim: int,
+        num_heads: int,
+        mlp_dim: int = 2048,
+        activation: Type[nn.Module] = nn.ReLU,
+        attention_downsample_rate: int = 2,
+        skip_first_layer_pe: bool = False,
+    ) -> None:
+        """
+        A transformer block with four layers: (1) self-attention of sparse
+        inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
+        block on sparse inputs, and (4) cross attention of dense inputs to sparse
+        inputs.
+
+        Arguments:
+          embedding_dim (int): the channel dimension of the embeddings
+          num_heads (int): the number of heads in the attention layers
+          mlp_dim (int): the hidden dimension of the mlp block
+          activation (nn.Module): the activation of the mlp block
+          skip_first_layer_pe (bool): skip the PE on the first layer
+        """
+        super().__init__()
+        self.self_attn = Attention(embedding_dim, num_heads)
+        self.norm1 = nn.LayerNorm(embedding_dim)
+
+        self.cross_attn_token_to_image = Attention(
+            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+        )
+        self.norm2 = nn.LayerNorm(embedding_dim)
+
+        self.mlp = MLP(
+            embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
+        )
+        self.norm3 = nn.LayerNorm(embedding_dim)
+
+        self.norm4 = nn.LayerNorm(embedding_dim)
+        self.cross_attn_image_to_token = Attention(
+            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
+        )
+
+        self.skip_first_layer_pe = skip_first_layer_pe
+
+    def forward(
+        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
+    ) -> Tuple[Tensor, Tensor]:
+        # Self attention block
+        if self.skip_first_layer_pe:
+            queries = self.self_attn(q=queries, k=queries, v=queries)
+        else:
+            q = queries + query_pe
+            attn_out = self.self_attn(q=q, k=q, v=queries)
+            queries = queries + attn_out
+        queries = self.norm1(queries)
+
+        # Cross attention block, tokens attending to image embedding
+        q = queries + query_pe
+        k = keys + key_pe
+        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
+        queries = queries + attn_out
+        queries = self.norm2(queries)
+
+        # MLP block
+        mlp_out = self.mlp(queries)
+        queries = queries + mlp_out
+        queries = self.norm3(queries)
+
+        # Cross attention block, image embedding attending to tokens
+        q = queries + query_pe
+        k = keys + key_pe
+        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
+        keys = keys + attn_out
+        keys = self.norm4(keys)
+
+        return queries, keys
+
+
+class Attention(nn.Module):
+    """
+    An attention layer that allows for downscaling the size of the embedding
+    after projection to queries, keys, and values.
+    """
+
+    def __init__(
+        self,
+        embedding_dim: int,
+        num_heads: int,
+        downsample_rate: int = 1,
+        dropout: float = 0.0,
+        kv_in_dim: int = None,
+    ) -> None:
+        super().__init__()
+        self.embedding_dim = embedding_dim
+        self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
+        self.internal_dim = embedding_dim // downsample_rate
+        self.num_heads = num_heads
+        assert (
+            self.internal_dim % num_heads == 0
+        ), "num_heads must divide embedding_dim."
+
+        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
+        self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
+        self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
+        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
+
+        self.dropout_p = dropout
+
+    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
+        b, n, c = x.shape
+        x = x.reshape(b, n, num_heads, c // num_heads)
+        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head
+
+    def _recombine_heads(self, x: Tensor) -> Tensor:
+        b, n_heads, n_tokens, c_per_head = x.shape
+        x = x.transpose(1, 2)
+        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C
+
+    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
+        # Input projections
+        q = self.q_proj(q)
+        k = self.k_proj(k)
+        v = self.v_proj(v)
+
+        # Separate into heads
+        q = self._separate_heads(q, self.num_heads)
+        k = self._separate_heads(k, self.num_heads)
+        v = self._separate_heads(v, self.num_heads)
+
+        dropout_p = self.dropout_p if self.training else 0.0
+        # Attention
+        try:
+            with sdp_kernel_context(dropout_p):
+                out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+        except Exception as e:
+            # Fall back to all kernels if the Flash attention kernel fails
+            warnings.warn(
+                f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
+                f"kernels for scaled_dot_product_attention (which may have a slower speed).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+            global ALLOW_ALL_KERNELS
+            ALLOW_ALL_KERNELS = True
+            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+
+        out = self._recombine_heads(out)
+        out = self.out_proj(out)
+
+        return out
+
+
+class RoPEAttention(Attention):
+    """Attention with rotary position encoding."""
+
+    def __init__(
+        self,
+        *args,
+        rope_theta=10000.0,
+        # whether to repeat q rope to match k length
+        # this is needed for cross-attention to memories
+        rope_k_repeat=False,
+        feat_sizes=(32, 32),  # [w, h] for stride 16 feats at 512 resolution
+        **kwargs,
+    ):
+        super().__init__(*args, **kwargs)
+
+        self.compute_cis = partial(
+            compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
+        )
+        freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
+        self.freqs_cis = freqs_cis
+        self.rope_k_repeat = rope_k_repeat
+
+    def forward(
+        self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
+    ) -> Tensor:
+        # Input projections
+        q = self.q_proj(q)
+        k = self.k_proj(k)
+        v = self.v_proj(v)
+
+        # Separate into heads
+        q = self._separate_heads(q, self.num_heads)
+        k = self._separate_heads(k, self.num_heads)
+        v = self._separate_heads(v, self.num_heads)
+
+        # Apply rotary position encoding
+        w = h = math.sqrt(q.shape[-2])
+        self.freqs_cis = self.freqs_cis.to(q.device)
+        if self.freqs_cis.shape[0] != q.shape[-2]:
+            self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
+        if q.shape[-2] != k.shape[-2]:
+            assert self.rope_k_repeat
+
+        num_k_rope = k.size(-2) - num_k_exclude_rope
+        q, k[:, :, :num_k_rope] = apply_rotary_enc(
+            q,
+            k[:, :, :num_k_rope],
+            freqs_cis=self.freqs_cis,
+            repeat_freqs_k=self.rope_k_repeat,
+        )
+
+        dropout_p = self.dropout_p if self.training else 0.0
+        # Attention
+        try:
+            with sdp_kernel_context(dropout_p):
+                out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+        except Exception as e:
+            # Fall back to all kernels if the Flash attention kernel fails
+            warnings.warn(
+                f"Flash Attention kernel failed due to: {e}\nFalling back to all available "
+                f"kernels for scaled_dot_product_attention (which may have a slower speed).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+            global ALLOW_ALL_KERNELS
+            ALLOW_ALL_KERNELS = True
+            out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
+
+        out = self._recombine_heads(out)
+        out = self.out_proj(out)
+
+        return out
diff --git a/sam2/modeling/sam2_base.py b/sam2/modeling/sam2_base.py
new file mode 100644
index 0000000000000000000000000000000000000000..a5d243adc9d7071f254dee115f92ff03d3b6e871
--- /dev/null
+++ b/sam2/modeling/sam2_base.py
@@ -0,0 +1,907 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import torch
+import torch.distributed
+import torch.nn.functional as F
+
+from torch.nn.init import trunc_normal_
+
+from sam2.modeling.sam.mask_decoder import MaskDecoder
+from sam2.modeling.sam.prompt_encoder import PromptEncoder
+from sam2.modeling.sam.transformer import TwoWayTransformer
+from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
+
+# a large negative value as a placeholder score for missing objects
+NO_OBJ_SCORE = -1024.0
+
+
+class SAM2Base(torch.nn.Module):
+    def __init__(
+        self,
+        image_encoder,
+        memory_attention,
+        memory_encoder,
+        num_maskmem=7,  # default 1 input frame + 6 previous frames
+        image_size=512,
+        backbone_stride=16,  # stride of the image backbone output
+        sigmoid_scale_for_mem_enc=1.0,  # scale factor for mask sigmoid prob
+        sigmoid_bias_for_mem_enc=0.0,  # bias factor for mask sigmoid prob
+        # During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
+        binarize_mask_from_pts_for_mem_enc=False,
+        use_mask_input_as_output_without_sam=False,  # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
+        # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
+        # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
+        # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
+        max_cond_frames_in_attn=-1,
+        # on the first frame, whether to directly add the no-memory embedding to the image feature
+        # (instead of using the transformer encoder)
+        directly_add_no_mem_embed=False,
+        # whether to use high-resolution feature maps in the SAM mask decoder
+        use_high_res_features_in_sam=False,
+        # whether to output multiple (3) masks for the first click on initial conditioning frames
+        multimask_output_in_sam=False,
+        # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
+        # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
+        multimask_min_pt_num=1,
+        multimask_max_pt_num=1,
+        # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
+        multimask_output_for_tracking=False,
+        # Whether to use multimask tokens for obj ptr; Only relevant when both
+        # use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
+        use_multimask_token_for_obj_ptr: bool = False,
+        # whether to use sigmoid to restrict ious prediction to [0-1]
+        iou_prediction_use_sigmoid=False,
+        # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
+        # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
+        # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
+        memory_temporal_stride_for_eval=1,
+        # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
+        non_overlap_masks_for_mem_enc=False,
+        # whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
+        use_obj_ptrs_in_encoder=False,
+        # the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
+        max_obj_ptrs_in_encoder=16,
+        # whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
+        add_tpos_enc_to_obj_ptrs=True,
+        # whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
+        # with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
+        proj_tpos_enc_in_obj_ptrs=False,
+        # whether to use signed distance (instead of unsigned absolute distance) in the temporal positional encoding in the object pointers
+        # (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
+        use_signed_tpos_enc_to_obj_ptrs=False,
+        # whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
+        # (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
+        only_obj_ptrs_in_the_past_for_eval=False,
+        # Whether to predict if there is an object in the frame
+        pred_obj_scores: bool = False,
+        # Whether to use an MLP to predict object scores
+        pred_obj_scores_mlp: bool = False,
+        # Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
+        # Whether to have a fixed no obj pointer when there is no object present
+        # or to use it as an additive embedding with obj_ptr produced by decoder
+        fixed_no_obj_ptr: bool = False,
+        # Soft no object, i.e. mix in no_obj_ptr softly,
+        # hope to make recovery easier if there is a mistake and mitigate accumulation of errors
+        soft_no_obj_ptr: bool = False,
+        use_mlp_for_obj_ptr_proj: bool = False,
+        # add no obj embedding to spatial frames
+        no_obj_embed_spatial: bool = False,
+        # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
+        sam_mask_decoder_extra_args=None,
+        compile_image_encoder: bool = False,
+    ):
+        super().__init__()
+
+        # Part 1: the image backbone
+        self.image_encoder = image_encoder
+        # Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
+        self.use_high_res_features_in_sam = use_high_res_features_in_sam
+        self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
+        self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
+        self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
+        if use_obj_ptrs_in_encoder:
+            # A conv layer to downsample the mask prompt to stride 4 (the same stride as
+            # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
+            # so that it can be fed into the SAM mask decoder to generate a pointer.
+            self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
+        self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
+        if proj_tpos_enc_in_obj_ptrs:
+            assert add_tpos_enc_to_obj_ptrs  # these options need to be used together
+        self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
+        self.use_signed_tpos_enc_to_obj_ptrs = use_signed_tpos_enc_to_obj_ptrs
+        self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
+
+        # Part 2: memory attention to condition current frame's visual features
+        # with memories (and obj ptrs) from past frames
+        self.memory_attention = memory_attention
+        self.hidden_dim = image_encoder.neck.d_model
+
+        # Part 3: memory encoder for the previous frame's outputs
+        self.memory_encoder = memory_encoder
+        self.mem_dim = self.hidden_dim
+        if hasattr(self.memory_encoder, "out_proj") and hasattr(
+            self.memory_encoder.out_proj, "weight"
+        ):
+            # if there is compression of memories along channel dim
+            self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
+        self.num_maskmem = num_maskmem  # Number of memories accessible
+        # Temporal encoding of the memories
+        self.maskmem_tpos_enc = torch.nn.Parameter(
+            torch.zeros(num_maskmem, 1, 1, self.mem_dim)
+        )
+        trunc_normal_(self.maskmem_tpos_enc, std=0.02)
+        # a single token to indicate no memory embedding from previous frames
+        self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
+        self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
+        trunc_normal_(self.no_mem_embed, std=0.02)
+        trunc_normal_(self.no_mem_pos_enc, std=0.02)
+        self.directly_add_no_mem_embed = directly_add_no_mem_embed
+        # Apply sigmoid to the output raw mask logits (to turn them from
+        # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
+        self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
+        self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
+        self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
+        self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
+        self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
+        # On frames with mask input, whether to directly output the input mask without
+        # using a SAM prompt encoder + mask decoder
+        self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
+        self.multimask_output_in_sam = multimask_output_in_sam
+        self.multimask_min_pt_num = multimask_min_pt_num
+        self.multimask_max_pt_num = multimask_max_pt_num
+        self.multimask_output_for_tracking = multimask_output_for_tracking
+        self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
+        self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
+
+        # Part 4: SAM-style prompt encoder (for both mask and point inputs)
+        # and SAM-style mask decoder for the final mask output
+        self.image_size = image_size
+        self.backbone_stride = backbone_stride
+        self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
+        self.pred_obj_scores = pred_obj_scores
+        self.pred_obj_scores_mlp = pred_obj_scores_mlp
+        self.fixed_no_obj_ptr = fixed_no_obj_ptr
+        self.soft_no_obj_ptr = soft_no_obj_ptr
+        if self.fixed_no_obj_ptr:
+            assert self.pred_obj_scores
+            assert self.use_obj_ptrs_in_encoder
+        if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
+            self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
+            trunc_normal_(self.no_obj_ptr, std=0.02)
+        self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
+        self.no_obj_embed_spatial = None
+        if no_obj_embed_spatial:
+            self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
+            trunc_normal_(self.no_obj_embed_spatial, std=0.02)
+
+        self._build_sam_heads()
+        self.max_cond_frames_in_attn = max_cond_frames_in_attn
+
+        # Model compilation
+        if compile_image_encoder:
+            # Compile the forward function (not the full module) to allow loading checkpoints.
+            print(
+                "Image encoder compilation is enabled. First forward pass will be slow."
+            )
+            self.image_encoder.forward = torch.compile(
+                self.image_encoder.forward,
+                mode="max-autotune",
+                fullgraph=True,
+                dynamic=False,
+            )
+
+    @property
+    def device(self):
+        return next(self.parameters()).device
+
+    def forward(self, *args, **kwargs):
+        raise NotImplementedError(
+            "Please use the corresponding methods in SAM2VideoPredictor for inference or SAM2Train for training/fine-tuning"
+            "See notebooks/video_predictor_example.ipynb for an inference example."
+        )
+
+    def _build_sam_heads(self):
+        """Build SAM-style prompt encoder and mask decoder."""
+        self.sam_prompt_embed_dim = self.hidden_dim
+        self.sam_image_embedding_size = self.image_size // self.backbone_stride
+
+        # build PromptEncoder and MaskDecoder from SAM
+        # (their hyperparameters like `mask_in_chans=16` are from SAM code)
+        self.sam_prompt_encoder = PromptEncoder(
+            embed_dim=self.sam_prompt_embed_dim,
+            image_embedding_size=(
+                self.sam_image_embedding_size,
+                self.sam_image_embedding_size,
+            ),
+            input_image_size=(self.image_size, self.image_size),
+            mask_in_chans=16,
+        )
+        self.sam_mask_decoder = MaskDecoder(
+            num_multimask_outputs=3,
+            transformer=TwoWayTransformer(
+                depth=2,
+                embedding_dim=self.sam_prompt_embed_dim,
+                mlp_dim=2048,
+                num_heads=8,
+            ),
+            transformer_dim=self.sam_prompt_embed_dim,
+            iou_head_depth=3,
+            iou_head_hidden_dim=256,
+            use_high_res_features=self.use_high_res_features_in_sam,
+            iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
+            pred_obj_scores=self.pred_obj_scores,
+            pred_obj_scores_mlp=self.pred_obj_scores_mlp,
+            use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
+            **(self.sam_mask_decoder_extra_args or {}),
+        )
+        if self.use_obj_ptrs_in_encoder:
+            # a linear projection on SAM output tokens to turn them into object pointers
+            self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
+            if self.use_mlp_for_obj_ptr_proj:
+                self.obj_ptr_proj = MLP(
+                    self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
+                )
+        else:
+            self.obj_ptr_proj = torch.nn.Identity()
+        if self.proj_tpos_enc_in_obj_ptrs:
+            # a linear projection on temporal positional encoding in object pointers to
+            # avoid potential interference with spatial positional encoding
+            self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
+        else:
+            self.obj_ptr_tpos_proj = torch.nn.Identity()
+
+    def _forward_sam_heads(
+        self,
+        backbone_features,
+        point_inputs=None,
+        mask_inputs=None,
+        high_res_features=None,
+        multimask_output=False,
+    ):
+        """
+        Forward SAM prompt encoders and mask heads.
+
+        Inputs:
+        - backbone_features: image features of [B, C, H, W] shape
+        - point_inputs: a dictionary with "point_coords" and "point_labels", where
+          1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
+             absolute pixel-unit coordinate in (x, y) format of the P input points
+          2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
+             positive clicks, 0 means negative clicks, and -1 means padding
+        - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
+          same spatial size as the image.
+        - high_res_features: either 1) None or 2) or a list of length 2 containing
+          two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
+          which will be used as high-resolution feature maps for SAM decoder.
+        - multimask_output: if it's True, we output 3 candidate masks and their 3
+          corresponding IoU estimates, and if it's False, we output only 1 mask and
+          its corresponding IoU estimate.
+
+        Outputs:
+        - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
+          `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
+          output mask logits (before sigmoid) for the low-resolution masks, with 4x
+          the resolution (1/4 stride) of the input backbone_features.
+        - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
+          if `multimask_output=True` and M = 1 if `multimask_output=False`),
+          upsampled from the low-resolution masks, with shape size as the image
+          (stride is 1 pixel).
+        - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
+          if `multimask_output=False`), the estimated IoU of each output mask.
+        - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
+          If `multimask_output=True`, it's the mask with the highest IoU estimate.
+          If `multimask_output=False`, it's the same as `low_res_multimasks`.
+        - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
+          If `multimask_output=True`, it's the mask with the highest IoU estimate.
+          If `multimask_output=False`, it's the same as `high_res_multimasks`.
+        - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
+          based on the output token from the SAM mask decoder.
+        """
+        B = backbone_features.size(0)
+        device = backbone_features.device
+        assert backbone_features.size(1) == self.sam_prompt_embed_dim
+        assert backbone_features.size(2) == self.sam_image_embedding_size
+        assert backbone_features.size(3) == self.sam_image_embedding_size
+
+        # a) Handle point prompts
+        if point_inputs is not None:
+            sam_point_coords = point_inputs["point_coords"]
+            sam_point_labels = point_inputs["point_labels"]
+            assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
+        else:
+            # If no points are provide, pad with an empty point (with label -1)
+            sam_point_coords = torch.zeros(B, 1, 2, device=device)
+            sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
+
+        # b) Handle mask prompts
+        if mask_inputs is not None:
+            # If mask_inputs is provided, downsize it into low-res mask input if needed
+            # and feed it as a dense mask prompt into the SAM mask encoder
+            assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
+            if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
+                sam_mask_prompt = F.interpolate(
+                    mask_inputs.float(),
+                    size=self.sam_prompt_encoder.mask_input_size,
+                    align_corners=False,
+                    mode="bilinear",
+                    antialias=True,  # use antialias for downsampling
+                )
+            else:
+                sam_mask_prompt = mask_inputs
+        else:
+            # Otherwise, simply feed None (and SAM's prompt encoder will add
+            # a learned `no_mask_embed` to indicate no mask input in this case).
+            sam_mask_prompt = None
+
+        sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
+            points=(sam_point_coords, sam_point_labels),
+            boxes=None,
+            masks=sam_mask_prompt,
+        )
+        (
+            low_res_multimasks,
+            ious,
+            sam_output_tokens,
+            object_score_logits,
+        ) = self.sam_mask_decoder(
+            image_embeddings=backbone_features,
+            image_pe=self.sam_prompt_encoder.get_dense_pe(),
+            sparse_prompt_embeddings=sparse_embeddings,
+            dense_prompt_embeddings=dense_embeddings,
+            multimask_output=multimask_output,
+            repeat_image=False,  # the image is already batched
+            high_res_features=high_res_features,
+        )
+        if self.pred_obj_scores:
+            is_obj_appearing = object_score_logits > 0
+
+            # Mask used for spatial memories is always a *hard* choice between obj and no obj,
+            # consistent with the actual mask prediction
+            low_res_multimasks = torch.where(
+                is_obj_appearing[:, None, None],
+                low_res_multimasks,
+                NO_OBJ_SCORE,
+            )
+
+        # convert masks from possibly bfloat16 (or float16) to float32
+        # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
+        low_res_multimasks = low_res_multimasks.float()
+        high_res_multimasks = F.interpolate(
+            low_res_multimasks,
+            size=(self.image_size, self.image_size),
+            mode="bilinear",
+            align_corners=False,
+        )
+
+        sam_output_token = sam_output_tokens[:, 0]
+        if multimask_output:
+            # take the best mask prediction (with the highest IoU estimation)
+            best_iou_inds = torch.argmax(ious, dim=-1)
+            batch_inds = torch.arange(B, device=device)
+            low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
+            high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
+            if sam_output_tokens.size(1) > 1:
+                sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
+        else:
+            low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
+
+        # Extract object pointer from the SAM output token (with occlusion handling)
+        obj_ptr = self.obj_ptr_proj(sam_output_token)
+        if self.pred_obj_scores:
+            # Allow *soft* no obj ptr, unlike for masks
+            if self.soft_no_obj_ptr:
+                lambda_is_obj_appearing = object_score_logits.sigmoid()
+            else:
+                lambda_is_obj_appearing = is_obj_appearing.float()
+
+            if self.fixed_no_obj_ptr:
+                obj_ptr = lambda_is_obj_appearing * obj_ptr
+            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
+
+        return (
+            low_res_multimasks,
+            high_res_multimasks,
+            ious,
+            low_res_masks,
+            high_res_masks,
+            obj_ptr,
+            object_score_logits,
+        )
+
+    def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
+        """
+        Directly turn binary `mask_inputs` into a output mask logits without using SAM.
+        (same input and output shapes as in _forward_sam_heads above).
+        """
+        # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
+        out_scale, out_bias = 20.0, -10.0  # sigmoid(-10.0)=4.5398e-05
+        mask_inputs_float = mask_inputs.float()
+        high_res_masks = mask_inputs_float * out_scale + out_bias
+        low_res_masks = F.interpolate(
+            high_res_masks,
+            size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
+            align_corners=False,
+            mode="bilinear",
+            antialias=True,  # use antialias for downsampling
+        )
+        # a dummy IoU prediction of all 1's under mask input
+        ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
+        if not self.use_obj_ptrs_in_encoder:
+            # all zeros as a dummy object pointer (of shape [B, C])
+            obj_ptr = torch.zeros(
+                mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
+            )
+        else:
+            # produce an object pointer using the SAM decoder from the mask input
+            _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
+                backbone_features=backbone_features,
+                mask_inputs=self.mask_downsample(mask_inputs_float),
+                high_res_features=high_res_features,
+            )
+        # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
+        # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
+        # on the object_scores from the SAM decoder.
+        is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
+        is_obj_appearing = is_obj_appearing[..., None]
+        lambda_is_obj_appearing = is_obj_appearing.float()
+        object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
+        if self.pred_obj_scores:
+            if self.fixed_no_obj_ptr:
+                obj_ptr = lambda_is_obj_appearing * obj_ptr
+            obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
+
+        return (
+            low_res_masks,
+            high_res_masks,
+            ious,
+            low_res_masks,
+            high_res_masks,
+            obj_ptr,
+            object_score_logits,
+        )
+
+    def forward_image(self, img_batch: torch.Tensor):
+        """Get the image feature on the input batch."""
+        backbone_out = self.image_encoder(img_batch)
+        if self.use_high_res_features_in_sam:
+            # precompute projected level 0 and level 1 features in SAM decoder
+            # to avoid running it again on every SAM click
+            backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
+                backbone_out["backbone_fpn"][0]
+            )
+            backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
+                backbone_out["backbone_fpn"][1]
+            )
+        return backbone_out
+
+    def _prepare_backbone_features(self, backbone_out):
+        """Prepare and flatten visual features."""
+        backbone_out = backbone_out.copy()
+        assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
+        assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
+
+        feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
+        vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
+
+        feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
+        # flatten NxCxHxW to HWxNxC
+        vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
+        vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
+
+        return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
+
+    def _prepare_memory_conditioned_features(
+        self,
+        frame_idx,
+        is_init_cond_frame,
+        current_vision_feats,
+        current_vision_pos_embeds,
+        feat_sizes,
+        output_dict,
+        num_frames,
+        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
+    ):
+        """Fuse the current frame's visual feature map with previous memory."""
+        B = current_vision_feats[-1].size(1)  # batch size on this frame
+        C = self.hidden_dim
+        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
+        device = current_vision_feats[-1].device
+        # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
+        # In this case, we skip the fusion with any memory.
+        if self.num_maskmem == 0:  # Disable memory and skip fusion
+            pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
+            return pix_feat
+
+        num_obj_ptr_tokens = 0
+        tpos_sign_mul = -1 if track_in_reverse else 1
+        # Step 1: condition the visual features of the current frame on previous memories
+        if not is_init_cond_frame:
+            # Retrieve the memories encoded with the maskmem backbone
+            to_cat_memory, to_cat_memory_pos_embed = [], []
+            # Add conditioning frames's output first (all cond frames have t_pos=0 for
+            # when getting temporal positional embedding below)
+            assert len(output_dict["cond_frame_outputs"]) > 0
+            # Select a maximum number of temporally closest cond frames for cross attention
+            cond_outputs = output_dict["cond_frame_outputs"]
+            selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
+                frame_idx, cond_outputs, self.max_cond_frames_in_attn
+            )
+            t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
+            # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
+            # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
+            # We also allow taking the memory frame non-consecutively (with stride>1), in which case
+            # we take (self.num_maskmem - 2) frames among every stride-th frames plus the last frame.
+            stride = 1 if self.training else self.memory_temporal_stride_for_eval
+            for t_pos in range(1, self.num_maskmem):
+                t_rel = self.num_maskmem - t_pos  # how many frames before current frame
+                if t_rel == 1:
+                    # for t_rel == 1, we take the last frame (regardless of r)
+                    if not track_in_reverse:
+                        # the frame immediately before this frame (i.e. frame_idx - 1)
+                        prev_frame_idx = frame_idx - t_rel
+                    else:
+                        # the frame immediately after this frame (i.e. frame_idx + 1)
+                        prev_frame_idx = frame_idx + t_rel
+                else:
+                    # for t_rel >= 2, we take the memory frame from every r-th frames
+                    if not track_in_reverse:
+                        # first find the nearest frame among every r-th frames before this frame
+                        # for r=1, this would be (frame_idx - 2)
+                        prev_frame_idx = ((frame_idx - 2) // stride) * stride
+                        # then seek further among every r-th frames
+                        prev_frame_idx = prev_frame_idx - (t_rel - 2) * stride
+                    else:
+                        # first find the nearest frame among every r-th frames after this frame
+                        # for r=1, this would be (frame_idx + 2)
+                        prev_frame_idx = -(-(frame_idx + 2) // stride) * stride
+                        # then seek further among every r-th frames
+                        prev_frame_idx = prev_frame_idx + (t_rel - 2) * stride
+                out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
+                if out is None:
+                    # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
+                    # frames, we still attend to it as if it's a non-conditioning frame.
+                    out = unselected_cond_outputs.get(prev_frame_idx, None)
+                t_pos_and_prevs.append((t_pos, out))
+
+            for t_pos, prev in t_pos_and_prevs:
+                if prev is None:
+                    continue  # skip padding frames
+                # "maskmem_features" might have been offloaded to CPU in demo use cases,
+                # so we load it back to GPU (it's a no-op if it's already on GPU).
+                feats = prev["maskmem_features"].to(device, non_blocking=True)
+                to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
+                # Spatial positional encoding (it might have been offloaded to CPU in eval)
+                maskmem_enc = prev["maskmem_pos_enc"][-1].to(device)
+                maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
+                # Temporal positional encoding
+                maskmem_enc = (
+                    maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
+                )
+                to_cat_memory_pos_embed.append(maskmem_enc)
+
+            # Construct the list of past object pointers
+            if self.use_obj_ptrs_in_encoder:
+                max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
+                # First add those object pointers from selected conditioning frames
+                # (optionally, only include object pointers in the past during evaluation)
+                if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
+                    ptr_cond_outputs = {
+                        t: out
+                        for t, out in selected_cond_outputs.items()
+                        if (t >= frame_idx if track_in_reverse else t <= frame_idx)
+                    }
+                else:
+                    ptr_cond_outputs = selected_cond_outputs
+                pos_and_ptrs = [
+                    # Temporal pos encoding contains how far away each pointer is from current frame
+                    (
+                        (
+                            (frame_idx - t) * tpos_sign_mul
+                            if self.use_signed_tpos_enc_to_obj_ptrs
+                            else abs(frame_idx - t)
+                        ),
+                        out["obj_ptr"],
+                    )
+                    for t, out in ptr_cond_outputs.items()
+                ]
+                # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
+                for t_diff in range(1, max_obj_ptrs_in_encoder):
+                    t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
+                    if t < 0 or (num_frames is not None and t >= num_frames):
+                        break
+                    out = output_dict["non_cond_frame_outputs"].get(
+                        t, unselected_cond_outputs.get(t, None)
+                    )
+                    if out is not None:
+                        pos_and_ptrs.append((t_diff, out["obj_ptr"]))
+                # If we have at least one object pointer, add them to the across attention
+                if len(pos_and_ptrs) > 0:
+                    pos_list, ptrs_list = zip(*pos_and_ptrs)
+                    # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
+                    obj_ptrs = torch.stack(ptrs_list, dim=0)
+                    # a temporal positional embedding based on how far each object pointer is from
+                    # the current frame (sine embedding normalized by the max pointer num).
+                    if self.add_tpos_enc_to_obj_ptrs:
+                        t_diff_max = max_obj_ptrs_in_encoder - 1
+                        tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
+                        obj_pos = torch.tensor(pos_list, device=device)
+                        obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
+                        obj_pos = self.obj_ptr_tpos_proj(obj_pos)
+                        obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
+                    else:
+                        obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
+                    if self.mem_dim < C:
+                        # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
+                        obj_ptrs = obj_ptrs.reshape(
+                            -1, B, C // self.mem_dim, self.mem_dim
+                        )
+                        obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
+                        obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
+                    to_cat_memory.append(obj_ptrs)
+                    to_cat_memory_pos_embed.append(obj_pos)
+                    num_obj_ptr_tokens = obj_ptrs.shape[0]
+                else:
+                    num_obj_ptr_tokens = 0
+        else:
+            # for initial conditioning frames, encode them without using any previous memory
+            if self.directly_add_no_mem_embed:
+                # directly add no-mem embedding (instead of using the transformer encoder)
+                pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
+                pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
+                return pix_feat_with_mem
+
+            # Use a dummy token on the first frame (to avoid empty memory input to tranformer encoder)
+            to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
+            to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
+
+        # Step 2: Concatenate the memories and forward through the transformer encoder
+        memory = torch.cat(to_cat_memory, dim=0)
+        memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
+
+        pix_feat_with_mem = self.memory_attention(
+            curr=current_vision_feats,
+            curr_pos=current_vision_pos_embeds,
+            memory=memory,
+            memory_pos=memory_pos_embed,
+            num_obj_ptr_tokens=num_obj_ptr_tokens,
+        )
+        # reshape the output (HW)BC => BCHW
+        pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
+        return pix_feat_with_mem
+
+    def _encode_new_memory(
+        self,
+        current_vision_feats,
+        feat_sizes,
+        pred_masks_high_res,
+        object_score_logits,
+        is_mask_from_pts,
+    ):
+        """Encode the current image and its prediction into a memory feature."""
+        B = current_vision_feats[-1].size(1)  # batch size on this frame
+        C = self.hidden_dim
+        H, W = feat_sizes[-1]  # top-level (lowest-resolution) feature size
+        # top-level feature, (HW)BC => BCHW
+        pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
+        if self.non_overlap_masks_for_mem_enc and not self.training:
+            # optionally, apply non-overlapping constraints to the masks (it's applied
+            # in the batch dimension and should only be used during eval, where all
+            # the objects come from the same video under batch size 1).
+            pred_masks_high_res = self._apply_non_overlapping_constraints(
+                pred_masks_high_res
+            )
+        # scale the raw mask logits with a temperature before applying sigmoid
+        binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
+        if binarize and not self.training:
+            mask_for_mem = (pred_masks_high_res > 0).float()
+        else:
+            # apply sigmoid on the raw mask logits to turn them into range (0, 1)
+            mask_for_mem = torch.sigmoid(pred_masks_high_res)
+        # apply scale and bias terms to the sigmoid probabilities
+        if self.sigmoid_scale_for_mem_enc != 1.0:
+            mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
+        if self.sigmoid_bias_for_mem_enc != 0.0:
+            mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
+        maskmem_out = self.memory_encoder(
+            pix_feat, mask_for_mem, skip_mask_sigmoid=True  # sigmoid already applied
+        )
+        maskmem_features = maskmem_out["vision_features"]
+        maskmem_pos_enc = maskmem_out["vision_pos_enc"]
+        # add a no-object embedding to the spatial memory to indicate that the frame
+        # is predicted to be occluded (i.e. no object is appearing in the frame)
+        if self.no_obj_embed_spatial is not None:
+            is_obj_appearing = (object_score_logits > 0).float()
+            maskmem_features += (
+                1 - is_obj_appearing[..., None, None]
+            ) * self.no_obj_embed_spatial[..., None, None].expand(
+                *maskmem_features.shape
+            )
+
+        return maskmem_features, maskmem_pos_enc
+
+    def _track_step(
+        self,
+        frame_idx,
+        is_init_cond_frame,
+        current_vision_feats,
+        current_vision_pos_embeds,
+        feat_sizes,
+        point_inputs,
+        mask_inputs,
+        output_dict,
+        num_frames,
+        track_in_reverse,
+        prev_sam_mask_logits,
+    ):
+        current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
+        # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
+        if len(current_vision_feats) > 1:
+            high_res_features = [
+                x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
+                for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
+            ]
+        else:
+            high_res_features = None
+        if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
+            # When use_mask_input_as_output_without_sam=True, we directly output the mask input
+            # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
+            pix_feat = current_vision_feats[-1].permute(1, 2, 0)
+            pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
+            sam_outputs = self._use_mask_as_output(
+                pix_feat, high_res_features, mask_inputs
+            )
+        else:
+            # fused the visual feature with previous memory features in the memory bank
+            pix_feat = self._prepare_memory_conditioned_features(
+                frame_idx=frame_idx,
+                is_init_cond_frame=is_init_cond_frame,
+                current_vision_feats=current_vision_feats[-1:],
+                current_vision_pos_embeds=current_vision_pos_embeds[-1:],
+                feat_sizes=feat_sizes[-1:],
+                output_dict=output_dict,
+                num_frames=num_frames,
+                track_in_reverse=track_in_reverse,
+            )
+            # apply SAM-style segmentation head
+            # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
+            # e.g. in demo where such logits come from earlier interaction instead of correction sampling
+            # (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
+            if prev_sam_mask_logits is not None:
+                assert point_inputs is not None and mask_inputs is None
+                mask_inputs = prev_sam_mask_logits
+            multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
+            sam_outputs = self._forward_sam_heads(
+                backbone_features=pix_feat,
+                point_inputs=point_inputs,
+                mask_inputs=mask_inputs,
+                high_res_features=high_res_features,
+                multimask_output=multimask_output,
+            )
+
+        return current_out, sam_outputs, high_res_features, pix_feat
+
+    def _encode_memory_in_output(
+        self,
+        current_vision_feats,
+        feat_sizes,
+        point_inputs,
+        run_mem_encoder,
+        high_res_masks,
+        object_score_logits,
+        current_out,
+    ):
+        if run_mem_encoder and self.num_maskmem > 0:
+            high_res_masks_for_mem_enc = high_res_masks
+            maskmem_features, maskmem_pos_enc = self._encode_new_memory(
+                current_vision_feats=current_vision_feats,
+                feat_sizes=feat_sizes,
+                pred_masks_high_res=high_res_masks_for_mem_enc,
+                object_score_logits=object_score_logits,
+                is_mask_from_pts=(point_inputs is not None),
+            )
+            current_out["maskmem_features"] = maskmem_features
+            current_out["maskmem_pos_enc"] = maskmem_pos_enc
+        else:
+            current_out["maskmem_features"] = None
+            current_out["maskmem_pos_enc"] = None
+
+    def track_step(
+        self,
+        frame_idx,
+        is_init_cond_frame,
+        current_vision_feats,
+        current_vision_pos_embeds,
+        feat_sizes,
+        point_inputs,
+        mask_inputs,
+        output_dict,
+        num_frames,
+        track_in_reverse=False,  # tracking in reverse time order (for demo usage)
+        # Whether to run the memory encoder on the predicted masks. Sometimes we might want
+        # to skip the memory encoder with `run_mem_encoder=False`. For example,
+        # in demo we might call `track_step` multiple times for each user click,
+        # and only encode the memory when the user finalizes their clicks. And in ablation
+        # settings like SAM training on static images, we don't need the memory encoder.
+        run_mem_encoder=True,
+        # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
+        prev_sam_mask_logits=None,
+    ):
+        current_out, sam_outputs, _, _ = self._track_step(
+            frame_idx,
+            is_init_cond_frame,
+            current_vision_feats,
+            current_vision_pos_embeds,
+            feat_sizes,
+            point_inputs,
+            mask_inputs,
+            output_dict,
+            num_frames,
+            track_in_reverse,
+            prev_sam_mask_logits,
+        )
+
+        (
+            _,
+            _,
+            _,
+            low_res_masks,
+            high_res_masks,
+            obj_ptr,
+            object_score_logits,
+        ) = sam_outputs
+
+        current_out["pred_masks"] = low_res_masks
+        current_out["pred_masks_high_res"] = high_res_masks
+        current_out["obj_ptr"] = obj_ptr
+        if not self.training:
+            # Only add this in inference (to avoid unused param in activation checkpointing;
+            # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
+            current_out["object_score_logits"] = object_score_logits
+
+        # Finally run the memory encoder on the predicted mask to encode
+        # it into a new memory feature (that can be used in future frames)
+        self._encode_memory_in_output(
+            current_vision_feats,
+            feat_sizes,
+            point_inputs,
+            run_mem_encoder,
+            high_res_masks,
+            object_score_logits,
+            current_out,
+        )
+
+        return current_out
+
+    def _use_multimask(self, is_init_cond_frame, point_inputs):
+        """Whether to use multimask output in the SAM head."""
+        num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
+        multimask_output = (
+            self.multimask_output_in_sam
+            and (is_init_cond_frame or self.multimask_output_for_tracking)
+            and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
+        )
+        return multimask_output
+
+    def _apply_non_overlapping_constraints(self, pred_masks):
+        """
+        Apply non-overlapping constraints to the object scores in pred_masks. Here we
+        keep only the highest scoring object at each spatial location in pred_masks.
+        """
+        batch_size = pred_masks.size(0)
+        if batch_size == 1:
+            return pred_masks
+
+        device = pred_masks.device
+        # "max_obj_inds": object index of the object with the highest score at each location
+        max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
+        # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
+        batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
+        keep = max_obj_inds == batch_obj_inds
+        # suppress overlapping regions' scores below -10.0 so that the foreground regions
+        # don't overlap (here sigmoid(-10.0)=4.5398e-05)
+        pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
+        return pred_masks
diff --git a/sam2/modeling/sam2_utils.py b/sam2/modeling/sam2_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..e16caae3a9a49e451b2d03d1ee60c47f8e9ed23c
--- /dev/null
+++ b/sam2/modeling/sam2_utils.py
@@ -0,0 +1,323 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+
+import copy
+from typing import Tuple
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from sam2.utils.misc import mask_to_box
+
+
+def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
+    """
+    Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
+    that are temporally closest to the current frame at `frame_idx`. Here, we take
+    - a) the closest conditioning frame before `frame_idx` (if any);
+    - b) the closest conditioning frame after `frame_idx` (if any);
+    - c) any other temporally closest conditioning frames until reaching a total
+         of `max_cond_frame_num` conditioning frames.
+
+    Outputs:
+    - selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
+    - unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
+    """
+    if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
+        selected_outputs = cond_frame_outputs
+        unselected_outputs = {}
+    else:
+        assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
+        selected_outputs = {}
+
+        # the closest conditioning frame before `frame_idx` (if any)
+        idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
+        if idx_before is not None:
+            selected_outputs[idx_before] = cond_frame_outputs[idx_before]
+
+        # the closest conditioning frame after `frame_idx` (if any)
+        idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
+        if idx_after is not None:
+            selected_outputs[idx_after] = cond_frame_outputs[idx_after]
+
+        # add other temporally closest conditioning frames until reaching a total
+        # of `max_cond_frame_num` conditioning frames.
+        num_remain = max_cond_frame_num - len(selected_outputs)
+        inds_remain = sorted(
+            (t for t in cond_frame_outputs if t not in selected_outputs),
+            key=lambda x: abs(x - frame_idx),
+        )[:num_remain]
+        selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
+        unselected_outputs = {
+            t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
+        }
+
+    return selected_outputs, unselected_outputs
+
+
+def get_1d_sine_pe(pos_inds, dim, temperature=10000):
+    """
+    Get 1D sine positional embedding as in the original Transformer paper.
+    """
+    pe_dim = dim // 2
+    dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
+    dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
+
+    pos_embed = pos_inds.unsqueeze(-1) / dim_t
+    pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
+    return pos_embed
+
+
+def get_activation_fn(activation):
+    """Return an activation function given a string"""
+    if activation == "relu":
+        return F.relu
+    if activation == "gelu":
+        return F.gelu
+    if activation == "glu":
+        return F.glu
+    raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
+
+
+def get_clones(module, N):
+    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+class DropPath(nn.Module):
+    # adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
+    def __init__(self, drop_prob=0.0, scale_by_keep=True):
+        super(DropPath, self).__init__()
+        self.drop_prob = drop_prob
+        self.scale_by_keep = scale_by_keep
+
+    def forward(self, x):
+        if self.drop_prob == 0.0 or not self.training:
+            return x
+        keep_prob = 1 - self.drop_prob
+        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
+        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
+        if keep_prob > 0.0 and self.scale_by_keep:
+            random_tensor.div_(keep_prob)
+        return x * random_tensor
+
+
+# Lightly adapted from
+# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
+class MLP(nn.Module):
+    def __init__(
+        self,
+        input_dim: int,
+        hidden_dim: int,
+        output_dim: int,
+        num_layers: int,
+        activation: nn.Module = nn.ReLU,
+        sigmoid_output: bool = False,
+    ) -> None:
+        super().__init__()
+        self.num_layers = num_layers
+        h = [hidden_dim] * (num_layers - 1)
+        self.layers = nn.ModuleList(
+            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
+        )
+        self.sigmoid_output = sigmoid_output
+        self.act = activation()
+
+    def forward(self, x):
+        for i, layer in enumerate(self.layers):
+            x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
+        if self.sigmoid_output:
+            x = F.sigmoid(x)
+        return x
+
+
+# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
+# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
+class LayerNorm2d(nn.Module):
+    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
+        super().__init__()
+        self.weight = nn.Parameter(torch.ones(num_channels))
+        self.bias = nn.Parameter(torch.zeros(num_channels))
+        self.eps = eps
+
+    def forward(self, x: torch.Tensor) -> torch.Tensor:
+        u = x.mean(1, keepdim=True)
+        s = (x - u).pow(2).mean(1, keepdim=True)
+        x = (x - u) / torch.sqrt(s + self.eps)
+        x = self.weight[:, None, None] * x + self.bias[:, None, None]
+        return x
+
+
+def sample_box_points(
+    masks: torch.Tensor,
+    noise: float = 0.1,  # SAM default
+    noise_bound: int = 20,  # SAM default
+    top_left_label: int = 2,
+    bottom_right_label: int = 3,
+) -> Tuple[np.array, np.array]:
+    """
+    Sample a noised version of the top left and bottom right corners of a given `bbox`
+
+    Inputs:
+    - masks: [B, 1, H,W] boxes, dtype=torch.Tensor
+    - noise: noise as a fraction of box width and height, dtype=float
+    - noise_bound: maximum amount of noise (in pure pixesl), dtype=int
+
+    Returns:
+    - box_coords: [B, num_pt, 2], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.float
+    - box_labels: [B, num_pt], label 2 is reserverd for top left and 3 for bottom right corners, dtype=torch.int32
+    """
+    device = masks.device
+    box_coords = mask_to_box(masks)
+    B, _, H, W = masks.shape
+    box_labels = torch.tensor(
+        [top_left_label, bottom_right_label], dtype=torch.int, device=device
+    ).repeat(B)
+    if noise > 0.0:
+        if not isinstance(noise_bound, torch.Tensor):
+            noise_bound = torch.tensor(noise_bound, device=device)
+        bbox_w = box_coords[..., 2] - box_coords[..., 0]
+        bbox_h = box_coords[..., 3] - box_coords[..., 1]
+        max_dx = torch.min(bbox_w * noise, noise_bound)
+        max_dy = torch.min(bbox_h * noise, noise_bound)
+        box_noise = 2 * torch.rand(B, 1, 4, device=device) - 1
+        box_noise = box_noise * torch.stack((max_dx, max_dy, max_dx, max_dy), dim=-1)
+
+        box_coords = box_coords + box_noise
+        img_bounds = (
+            torch.tensor([W, H, W, H], device=device) - 1
+        )  # uncentered pixel coords
+        box_coords.clamp_(torch.zeros_like(img_bounds), img_bounds)  # In place clamping
+
+    box_coords = box_coords.reshape(-1, 2, 2)  # always 2 points
+    box_labels = box_labels.reshape(-1, 2)
+    return box_coords, box_labels
+
+
+def sample_random_points_from_errors(gt_masks, pred_masks, num_pt=1):
+    """
+    Sample `num_pt` random points (along with their labels) independently from the error regions.
+
+    Inputs:
+    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
+    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
+    - num_pt: int, number of points to sample independently for each of the B error maps
+
+    Outputs:
+    - points: [B, num_pt, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
+    - labels: [B, num_pt], dtype=torch.int32, where 1 means positive clicks and 0 means
+      negative clicks
+    """
+    if pred_masks is None:  # if pred_masks is not provided, treat it as empty
+        pred_masks = torch.zeros_like(gt_masks)
+    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
+    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
+    assert num_pt >= 0
+
+    B, _, H_im, W_im = gt_masks.shape
+    device = gt_masks.device
+
+    # false positive region, a new point sampled in this region should have
+    # negative label to correct the FP error
+    fp_masks = ~gt_masks & pred_masks
+    # false negative region, a new point sampled in this region should have
+    # positive label to correct the FN error
+    fn_masks = gt_masks & ~pred_masks
+    # whether the prediction completely match the ground-truth on each mask
+    all_correct = torch.all((gt_masks == pred_masks).flatten(2), dim=2)
+    all_correct = all_correct[..., None, None]
+
+    # channel 0 is FP map, while channel 1 is FN map
+    pts_noise = torch.rand(B, num_pt, H_im, W_im, 2, device=device)
+    # sample a negative new click from FP region or a positive new click
+    # from FN region, depend on where the maximum falls,
+    # and in case the predictions are all correct (no FP or FN), we just
+    # sample a negative click from the background region
+    pts_noise[..., 0] *= fp_masks | (all_correct & ~gt_masks)
+    pts_noise[..., 1] *= fn_masks
+    pts_idx = pts_noise.flatten(2).argmax(dim=2)
+    labels = (pts_idx % 2).to(torch.int32)
+    pts_idx = pts_idx // 2
+    pts_x = pts_idx % W_im
+    pts_y = pts_idx // W_im
+    points = torch.stack([pts_x, pts_y], dim=2).to(torch.float)
+    return points, labels
+
+
+def sample_one_point_from_error_center(gt_masks, pred_masks, padding=True):
+    """
+    Sample 1 random point (along with its label) from the center of each error region,
+    that is, the point with the largest distance to the boundary of each error region.
+    This is the RITM sampling method from https://github.com/saic-vul/ritm_interactive_segmentation/blob/master/isegm/inference/clicker.py
+
+    Inputs:
+    - gt_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool
+    - pred_masks: [B, 1, H_im, W_im] masks, dtype=torch.bool or None
+    - padding: if True, pad with boundary of 1 px for distance transform
+
+    Outputs:
+    - points: [B, 1, 2], dtype=torch.float, contains (x, y) coordinates of each sampled point
+    - labels: [B, 1], dtype=torch.int32, where 1 means positive clicks and 0 means negative clicks
+    """
+    import cv2
+
+    if pred_masks is None:
+        pred_masks = torch.zeros_like(gt_masks)
+    assert gt_masks.dtype == torch.bool and gt_masks.size(1) == 1
+    assert pred_masks.dtype == torch.bool and pred_masks.shape == gt_masks.shape
+
+    B, _, _, W_im = gt_masks.shape
+    device = gt_masks.device
+
+    # false positive region, a new point sampled in this region should have
+    # negative label to correct the FP error
+    fp_masks = ~gt_masks & pred_masks
+    # false negative region, a new point sampled in this region should have
+    # positive label to correct the FN error
+    fn_masks = gt_masks & ~pred_masks
+
+    fp_masks = fp_masks.cpu().numpy()
+    fn_masks = fn_masks.cpu().numpy()
+    points = torch.zeros(B, 1, 2, dtype=torch.float)
+    labels = torch.ones(B, 1, dtype=torch.int32)
+    for b in range(B):
+        fn_mask = fn_masks[b, 0]
+        fp_mask = fp_masks[b, 0]
+        if padding:
+            fn_mask = np.pad(fn_mask, ((1, 1), (1, 1)), "constant")
+            fp_mask = np.pad(fp_mask, ((1, 1), (1, 1)), "constant")
+        # compute the distance of each point in FN/FP region to its boundary
+        fn_mask_dt = cv2.distanceTransform(fn_mask.astype(np.uint8), cv2.DIST_L2, 0)
+        fp_mask_dt = cv2.distanceTransform(fp_mask.astype(np.uint8), cv2.DIST_L2, 0)
+        if padding:
+            fn_mask_dt = fn_mask_dt[1:-1, 1:-1]
+            fp_mask_dt = fp_mask_dt[1:-1, 1:-1]
+
+        # take the point in FN/FP region with the largest distance to its boundary
+        fn_mask_dt_flat = fn_mask_dt.reshape(-1)
+        fp_mask_dt_flat = fp_mask_dt.reshape(-1)
+        fn_argmax = np.argmax(fn_mask_dt_flat)
+        fp_argmax = np.argmax(fp_mask_dt_flat)
+        is_positive = fn_mask_dt_flat[fn_argmax] > fp_mask_dt_flat[fp_argmax]
+        pt_idx = fn_argmax if is_positive else fp_argmax
+        points[b, 0, 0] = pt_idx % W_im  # x
+        points[b, 0, 1] = pt_idx // W_im  # y
+        labels[b, 0] = int(is_positive)
+
+    points = points.to(device)
+    labels = labels.to(device)
+    return points, labels
+
+
+def get_next_point(gt_masks, pred_masks, method):
+    if method == "uniform":
+        return sample_random_points_from_errors(gt_masks, pred_masks)
+    elif method == "center":
+        return sample_one_point_from_error_center(gt_masks, pred_masks)
+    else:
+        raise ValueError(f"unknown sampling method {method}")
diff --git a/sam2/sam2_hiera_b+.yaml b/sam2/sam2_hiera_b+.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..998d9c98c9ff4e8ddd55deff72aa0d9067977418
--- /dev/null
+++ b/sam2/sam2_hiera_b+.yaml
@@ -0,0 +1 @@
+configs/sam2/sam2_hiera_b+.yaml
\ No newline at end of file
diff --git a/sam2/sam2_hiera_l.yaml b/sam2/sam2_hiera_l.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..c0e7e58e1951d5c55a3a3ebe6b803dd814cf9d86
--- /dev/null
+++ b/sam2/sam2_hiera_l.yaml
@@ -0,0 +1 @@
+configs/sam2/sam2_hiera_l.yaml
\ No newline at end of file
diff --git a/sam2/sam2_hiera_s.yaml b/sam2/sam2_hiera_s.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..41896a26beb2aa831d18b0bf3c349ed43deeef68
--- /dev/null
+++ b/sam2/sam2_hiera_s.yaml
@@ -0,0 +1 @@
+configs/sam2/sam2_hiera_s.yaml
\ No newline at end of file
diff --git a/sam2/sam2_hiera_t.yaml b/sam2/sam2_hiera_t.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..71ff3abbb1e11f8b82100a0a1d63cb267eefe52a
--- /dev/null
+++ b/sam2/sam2_hiera_t.yaml
@@ -0,0 +1 @@
+configs/sam2/sam2_hiera_t.yaml
\ No newline at end of file
diff --git a/sam2/sam2_image_predictor.py b/sam2/sam2_image_predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..41ce53af5924504c07216df52b2d2eefaeec7ae9
--- /dev/null
+++ b/sam2/sam2_image_predictor.py
@@ -0,0 +1,466 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import logging
+
+from typing import List, Optional, Tuple, Union
+
+import numpy as np
+import torch
+from PIL.Image import Image
+
+from sam2.modeling.sam2_base import SAM2Base
+
+from sam2.utils.transforms import SAM2Transforms
+
+
+class SAM2ImagePredictor:
+    def __init__(
+        self,
+        sam_model: SAM2Base,
+        mask_threshold=0.0,
+        max_hole_area=0.0,
+        max_sprinkle_area=0.0,
+        **kwargs,
+    ) -> None:
+        """
+        Uses SAM-2 to calculate the image embedding for an image, and then
+        allow repeated, efficient mask prediction given prompts.
+
+        Arguments:
+          sam_model (Sam-2): The model to use for mask prediction.
+          mask_threshold (float): The threshold to use when converting mask logits
+            to binary masks. Masks are thresholded at 0 by default.
+          max_hole_area (int): If max_hole_area > 0, we fill small holes in up to
+            the maximum area of max_hole_area in low_res_masks.
+          max_sprinkle_area (int): If max_sprinkle_area > 0, we remove small sprinkles up to
+            the maximum area of max_sprinkle_area in low_res_masks.
+        """
+        super().__init__()
+        self.model = sam_model
+        self._transforms = SAM2Transforms(
+            resolution=self.model.image_size,
+            mask_threshold=mask_threshold,
+            max_hole_area=max_hole_area,
+            max_sprinkle_area=max_sprinkle_area,
+        )
+
+        # Predictor state
+        self._is_image_set = False
+        self._features = None
+        self._orig_hw = None
+        # Whether the predictor is set for single image or a batch of images
+        self._is_batch = False
+
+        # Predictor config
+        self.mask_threshold = mask_threshold
+
+        # Spatial dim for backbone feature maps
+        self._bb_feat_sizes = [
+            (256, 256),
+            (128, 128),
+            (64, 64),
+        ]
+
+    @classmethod
+    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2ImagePredictor":
+        """
+        Load a pretrained model from the Hugging Face hub.
+
+        Arguments:
+          model_id (str): The Hugging Face repository ID.
+          **kwargs: Additional arguments to pass to the model constructor.
+
+        Returns:
+          (SAM2ImagePredictor): The loaded model.
+        """
+        from sam2.build_sam import build_sam2_hf
+
+        sam_model = build_sam2_hf(model_id, **kwargs)
+        return cls(sam_model, **kwargs)
+
+    @torch.no_grad()
+    def set_image(
+        self,
+        image: Union[np.ndarray, Image],
+    ) -> None:
+        """
+        Calculates the image embeddings for the provided image, allowing
+        masks to be predicted with the 'predict' method.
+
+        Arguments:
+          image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
+          with pixel values in [0, 255].
+          image_format (str): The color format of the image, in ['RGB', 'BGR'].
+        """
+        self.reset_predictor()
+        # Transform the image to the form expected by the model
+        if isinstance(image, np.ndarray):
+            logging.info("For numpy array image, we assume (HxWxC) format")
+            self._orig_hw = [image.shape[:2]]
+        elif isinstance(image, Image):
+            w, h = image.size
+            self._orig_hw = [(h, w)]
+        else:
+            raise NotImplementedError("Image format not supported")
+
+        input_image = self._transforms(image)
+        input_image = input_image[None, ...].to(self.device)
+
+        assert (
+            len(input_image.shape) == 4 and input_image.shape[1] == 3
+        ), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
+        logging.info("Computing image embeddings for the provided image...")
+        backbone_out = self.model.forward_image(input_image)
+        _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
+        # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
+        if self.model.directly_add_no_mem_embed:
+            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
+
+        feats = [
+            feat.permute(1, 2, 0).view(1, -1, *feat_size)
+            for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
+        ][::-1]
+        self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
+        self._is_image_set = True
+        logging.info("Image embeddings computed.")
+
+    @torch.no_grad()
+    def set_image_batch(
+        self,
+        image_list: List[Union[np.ndarray]],
+    ) -> None:
+        """
+        Calculates the image embeddings for the provided image batch, allowing
+        masks to be predicted with the 'predict_batch' method.
+
+        Arguments:
+          image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
+          with pixel values in [0, 255].
+        """
+        self.reset_predictor()
+        assert isinstance(image_list, list)
+        self._orig_hw = []
+        for image in image_list:
+            assert isinstance(
+                image, np.ndarray
+            ), "Images are expected to be an np.ndarray in RGB format, and of shape  HWC"
+            self._orig_hw.append(image.shape[:2])
+        # Transform the image to the form expected by the model
+        img_batch = self._transforms.forward_batch(image_list)
+        img_batch = img_batch.to(self.device)
+        batch_size = img_batch.shape[0]
+        assert (
+            len(img_batch.shape) == 4 and img_batch.shape[1] == 3
+        ), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
+        logging.info("Computing image embeddings for the provided images...")
+        backbone_out = self.model.forward_image(img_batch)
+        _, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
+        # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
+        if self.model.directly_add_no_mem_embed:
+            vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
+
+        feats = [
+            feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
+            for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
+        ][::-1]
+        self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
+        self._is_image_set = True
+        self._is_batch = True
+        logging.info("Image embeddings computed.")
+
+    def predict_batch(
+        self,
+        point_coords_batch: List[np.ndarray] = None,
+        point_labels_batch: List[np.ndarray] = None,
+        box_batch: List[np.ndarray] = None,
+        mask_input_batch: List[np.ndarray] = None,
+        multimask_output: bool = True,
+        return_logits: bool = False,
+        normalize_coords=True,
+    ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
+        """This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
+        It returns a tuple of lists of masks, ious, and low_res_masks_logits.
+        """
+        assert self._is_batch, "This function should only be used when in batched mode"
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image_batch(...) before mask prediction."
+            )
+        num_images = len(self._features["image_embed"])
+        all_masks = []
+        all_ious = []
+        all_low_res_masks = []
+        for img_idx in range(num_images):
+            # Transform input prompts
+            point_coords = (
+                point_coords_batch[img_idx] if point_coords_batch is not None else None
+            )
+            point_labels = (
+                point_labels_batch[img_idx] if point_labels_batch is not None else None
+            )
+            box = box_batch[img_idx] if box_batch is not None else None
+            mask_input = (
+                mask_input_batch[img_idx] if mask_input_batch is not None else None
+            )
+            mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
+                point_coords,
+                point_labels,
+                box,
+                mask_input,
+                normalize_coords,
+                img_idx=img_idx,
+            )
+            masks, iou_predictions, low_res_masks = self._predict(
+                unnorm_coords,
+                labels,
+                unnorm_box,
+                mask_input,
+                multimask_output,
+                return_logits=return_logits,
+                img_idx=img_idx,
+            )
+            masks_np = masks.squeeze(0).float().detach().cpu().numpy()
+            iou_predictions_np = (
+                iou_predictions.squeeze(0).float().detach().cpu().numpy()
+            )
+            low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
+            all_masks.append(masks_np)
+            all_ious.append(iou_predictions_np)
+            all_low_res_masks.append(low_res_masks_np)
+
+        return all_masks, all_ious, all_low_res_masks
+
+    def predict(
+        self,
+        point_coords: Optional[np.ndarray] = None,
+        point_labels: Optional[np.ndarray] = None,
+        box: Optional[np.ndarray] = None,
+        mask_input: Optional[np.ndarray] = None,
+        multimask_output: bool = True,
+        return_logits: bool = False,
+        normalize_coords=True,
+    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
+        """
+        Predict masks for the given input prompts, using the currently set image.
+
+        Arguments:
+          point_coords (np.ndarray or None): A Nx2 array of point prompts to the
+            model. Each point is in (X,Y) in pixels.
+          point_labels (np.ndarray or None): A length N array of labels for the
+            point prompts. 1 indicates a foreground point and 0 indicates a
+            background point.
+          box (np.ndarray or None): A length 4 array given a box prompt to the
+            model, in XYXY format.
+          mask_input (np.ndarray): A low resolution mask input to the model, typically
+            coming from a previous prediction iteration. Has form 1xHxW, where
+            for SAM, H=W=256.
+          multimask_output (bool): If true, the model will return three masks.
+            For ambiguous input prompts (such as a single click), this will often
+            produce better masks than a single prediction. If only a single
+            mask is needed, the model's predicted quality score can be used
+            to select the best mask. For non-ambiguous prompts, such as multiple
+            input prompts, multimask_output=False can give better results.
+          return_logits (bool): If true, returns un-thresholded masks logits
+            instead of a binary mask.
+          normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
+
+        Returns:
+          (np.ndarray): The output masks in CxHxW format, where C is the
+            number of masks, and (H, W) is the original image size.
+          (np.ndarray): An array of length C containing the model's
+            predictions for the quality of each mask.
+          (np.ndarray): An array of shape CxHxW, where C is the number
+            of masks and H=W=256. These low resolution logits can be passed to
+            a subsequent iteration as mask input.
+        """
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image(...) before mask prediction."
+            )
+
+        # Transform input prompts
+
+        mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
+            point_coords, point_labels, box, mask_input, normalize_coords
+        )
+
+        masks, iou_predictions, low_res_masks = self._predict(
+            unnorm_coords,
+            labels,
+            unnorm_box,
+            mask_input,
+            multimask_output,
+            return_logits=return_logits,
+        )
+
+        masks_np = masks.squeeze(0).float().detach().cpu().numpy()
+        iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
+        low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
+        return masks_np, iou_predictions_np, low_res_masks_np
+
+    def _prep_prompts(
+        self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
+    ):
+
+        unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
+        if point_coords is not None:
+            assert (
+                point_labels is not None
+            ), "point_labels must be supplied if point_coords is supplied."
+            point_coords = torch.as_tensor(
+                point_coords, dtype=torch.float, device=self.device
+            )
+            unnorm_coords = self._transforms.transform_coords(
+                point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
+            )
+            labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
+            if len(unnorm_coords.shape) == 2:
+                unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
+        if box is not None:
+            box = torch.as_tensor(box, dtype=torch.float, device=self.device)
+            unnorm_box = self._transforms.transform_boxes(
+                box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
+            )  # Bx2x2
+        if mask_logits is not None:
+            mask_input = torch.as_tensor(
+                mask_logits, dtype=torch.float, device=self.device
+            )
+            if len(mask_input.shape) == 3:
+                mask_input = mask_input[None, :, :, :]
+        return mask_input, unnorm_coords, labels, unnorm_box
+
+    @torch.no_grad()
+    def _predict(
+        self,
+        point_coords: Optional[torch.Tensor],
+        point_labels: Optional[torch.Tensor],
+        boxes: Optional[torch.Tensor] = None,
+        mask_input: Optional[torch.Tensor] = None,
+        multimask_output: bool = True,
+        return_logits: bool = False,
+        img_idx: int = -1,
+    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
+        """
+        Predict masks for the given input prompts, using the currently set image.
+        Input prompts are batched torch tensors and are expected to already be
+        transformed to the input frame using SAM2Transforms.
+
+        Arguments:
+          point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
+            model. Each point is in (X,Y) in pixels.
+          point_labels (torch.Tensor or None): A BxN array of labels for the
+            point prompts. 1 indicates a foreground point and 0 indicates a
+            background point.
+          boxes (np.ndarray or None): A Bx4 array given a box prompt to the
+            model, in XYXY format.
+          mask_input (np.ndarray): A low resolution mask input to the model, typically
+            coming from a previous prediction iteration. Has form Bx1xHxW, where
+            for SAM, H=W=256. Masks returned by a previous iteration of the
+            predict method do not need further transformation.
+          multimask_output (bool): If true, the model will return three masks.
+            For ambiguous input prompts (such as a single click), this will often
+            produce better masks than a single prediction. If only a single
+            mask is needed, the model's predicted quality score can be used
+            to select the best mask. For non-ambiguous prompts, such as multiple
+            input prompts, multimask_output=False can give better results.
+          return_logits (bool): If true, returns un-thresholded masks logits
+            instead of a binary mask.
+
+        Returns:
+          (torch.Tensor): The output masks in BxCxHxW format, where C is the
+            number of masks, and (H, W) is the original image size.
+          (torch.Tensor): An array of shape BxC containing the model's
+            predictions for the quality of each mask.
+          (torch.Tensor): An array of shape BxCxHxW, where C is the number
+            of masks and H=W=256. These low res logits can be passed to
+            a subsequent iteration as mask input.
+        """
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image(...) before mask prediction."
+            )
+
+        if point_coords is not None:
+            concat_points = (point_coords, point_labels)
+        else:
+            concat_points = None
+
+        # Embed prompts
+        if boxes is not None:
+            box_coords = boxes.reshape(-1, 2, 2)
+            box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
+            box_labels = box_labels.repeat(boxes.size(0), 1)
+            # we merge "boxes" and "points" into a single "concat_points" input (where
+            # boxes are added at the beginning) to sam_prompt_encoder
+            if concat_points is not None:
+                concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
+                concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
+                concat_points = (concat_coords, concat_labels)
+            else:
+                concat_points = (box_coords, box_labels)
+
+        sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
+            points=concat_points,
+            boxes=None,
+            masks=mask_input,
+        )
+
+        # Predict masks
+        batched_mode = (
+            concat_points is not None and concat_points[0].shape[0] > 1
+        )  # multi object prediction
+        high_res_features = [
+            feat_level[img_idx].unsqueeze(0)
+            for feat_level in self._features["high_res_feats"]
+        ]
+        low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
+            image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
+            image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
+            sparse_prompt_embeddings=sparse_embeddings,
+            dense_prompt_embeddings=dense_embeddings,
+            multimask_output=multimask_output,
+            repeat_image=batched_mode,
+            high_res_features=high_res_features,
+        )
+
+        # Upscale the masks to the original image resolution
+        masks = self._transforms.postprocess_masks(
+            low_res_masks, self._orig_hw[img_idx]
+        )
+        low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
+        if not return_logits:
+            masks = masks > self.mask_threshold
+
+        return masks, iou_predictions, low_res_masks
+
+    def get_image_embedding(self) -> torch.Tensor:
+        """
+        Returns the image embeddings for the currently set image, with
+        shape 1xCxHxW, where C is the embedding dimension and (H,W) are
+        the embedding spatial dimension of SAM (typically C=256, H=W=64).
+        """
+        if not self._is_image_set:
+            raise RuntimeError(
+                "An image must be set with .set_image(...) to generate an embedding."
+            )
+        assert (
+            self._features is not None
+        ), "Features must exist if an image has been set."
+        return self._features["image_embed"]
+
+    @property
+    def device(self) -> torch.device:
+        return self.model.device
+
+    def reset_predictor(self) -> None:
+        """
+        Resets the image embeddings and other state variables.
+        """
+        self._is_image_set = False
+        self._features = None
+        self._orig_hw = None
+        self._is_batch = False
diff --git a/sam2/sam2_video_predictor.py b/sam2/sam2_video_predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..c7e01ccf972491904b013526333826b337354db1
--- /dev/null
+++ b/sam2/sam2_video_predictor.py
@@ -0,0 +1,1172 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import warnings
+from collections import OrderedDict
+
+import torch
+
+from tqdm import tqdm
+
+from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
+from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
+
+
+class SAM2VideoPredictor(SAM2Base):
+    """The predictor class to handle user interactions and manage inference states."""
+
+    def __init__(
+        self,
+        fill_hole_area=0,
+        # whether to apply non-overlapping constraints on the output object masks
+        non_overlap_masks=False,
+        # whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
+        # note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
+        clear_non_cond_mem_around_input=False,
+        # whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
+        clear_non_cond_mem_for_multi_obj=False,
+        # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
+        # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
+        add_all_frames_to_correct_as_cond=False,
+        **kwargs,
+    ):
+        super().__init__(**kwargs)
+        self.fill_hole_area = fill_hole_area
+        self.non_overlap_masks = non_overlap_masks
+        self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
+        self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
+        self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
+
+    @torch.inference_mode()
+    def init_state(
+        self,
+        video_path,
+        offload_video_to_cpu=False,
+        offload_state_to_cpu=False,
+        async_loading_frames=False,
+    ):
+        """Initialize an inference state."""
+        compute_device = self.device  # device of the model
+        images, video_height, video_width = load_video_frames(
+            video_path=video_path,
+            image_size=self.image_size,
+            offload_video_to_cpu=offload_video_to_cpu,
+            async_loading_frames=async_loading_frames,
+            compute_device=compute_device,
+        )
+        inference_state = {}
+        inference_state["images"] = images
+        inference_state["num_frames"] = len(images)
+        # whether to offload the video frames to CPU memory
+        # turning on this option saves the GPU memory with only a very small overhead
+        inference_state["offload_video_to_cpu"] = offload_video_to_cpu
+        # whether to offload the inference state to CPU memory
+        # turning on this option saves the GPU memory at the cost of a lower tracking fps
+        # (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
+        # and from 24 to 21 when tracking two objects)
+        inference_state["offload_state_to_cpu"] = offload_state_to_cpu
+        # the original video height and width, used for resizing final output scores
+        inference_state["video_height"] = video_height
+        inference_state["video_width"] = video_width
+        inference_state["device"] = compute_device
+        if offload_state_to_cpu:
+            inference_state["storage_device"] = torch.device("cpu")
+        else:
+            inference_state["storage_device"] = compute_device
+        # inputs on each frame
+        inference_state["point_inputs_per_obj"] = {}
+        inference_state["mask_inputs_per_obj"] = {}
+        # visual features on a small number of recently visited frames for quick interactions
+        inference_state["cached_features"] = {}
+        # values that don't change across frames (so we only need to hold one copy of them)
+        inference_state["constants"] = {}
+        # mapping between client-side object id and model-side object index
+        inference_state["obj_id_to_idx"] = OrderedDict()
+        inference_state["obj_idx_to_id"] = OrderedDict()
+        inference_state["obj_ids"] = []
+        # A storage to hold the model's tracking results and states on each frame
+        inference_state["output_dict"] = {
+            "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+            "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+        }
+        # Slice (view) of each object tracking results, sharing the same memory with "output_dict"
+        inference_state["output_dict_per_obj"] = {}
+        # A temporary storage to hold new outputs when user interact with a frame
+        # to add clicks or mask (it's merged into "output_dict" before propagation starts)
+        inference_state["temp_output_dict_per_obj"] = {}
+        # Frames that already holds consolidated outputs from click or mask inputs
+        # (we directly use their consolidated outputs during tracking)
+        inference_state["consolidated_frame_inds"] = {
+            "cond_frame_outputs": set(),  # set containing frame indices
+            "non_cond_frame_outputs": set(),  # set containing frame indices
+        }
+        # metadata for each tracking frame (e.g. which direction it's tracked)
+        inference_state["tracking_has_started"] = False
+        inference_state["frames_already_tracked"] = {}
+        # Warm up the visual backbone and cache the image feature on frame 0
+        self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
+        return inference_state
+
+    @classmethod
+    def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2VideoPredictor":
+        """
+        Load a pretrained model from the Hugging Face hub.
+
+        Arguments:
+          model_id (str): The Hugging Face repository ID.
+          **kwargs: Additional arguments to pass to the model constructor.
+
+        Returns:
+          (SAM2VideoPredictor): The loaded model.
+        """
+        from sam2.build_sam import build_sam2_video_predictor_hf
+
+        sam_model = build_sam2_video_predictor_hf(model_id, **kwargs)
+        return sam_model
+
+    def _obj_id_to_idx(self, inference_state, obj_id):
+        """Map client-side object id to model-side object index."""
+        obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
+        if obj_idx is not None:
+            return obj_idx
+
+        # This is a new object id not sent to the server before. We only allow adding
+        # new objects *before* the tracking starts.
+        allow_new_object = not inference_state["tracking_has_started"]
+        if allow_new_object:
+            # get the next object slot
+            obj_idx = len(inference_state["obj_id_to_idx"])
+            inference_state["obj_id_to_idx"][obj_id] = obj_idx
+            inference_state["obj_idx_to_id"][obj_idx] = obj_id
+            inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
+            # set up input and output structures for this object
+            inference_state["point_inputs_per_obj"][obj_idx] = {}
+            inference_state["mask_inputs_per_obj"][obj_idx] = {}
+            inference_state["output_dict_per_obj"][obj_idx] = {
+                "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+                "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+            }
+            inference_state["temp_output_dict_per_obj"][obj_idx] = {
+                "cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+                "non_cond_frame_outputs": {},  # dict containing {frame_idx: <out>}
+            }
+            return obj_idx
+        else:
+            raise RuntimeError(
+                f"Cannot add new object id {obj_id} after tracking starts. "
+                f"All existing object ids: {inference_state['obj_ids']}. "
+                f"Please call 'reset_state' to restart from scratch."
+            )
+
+    def _obj_idx_to_id(self, inference_state, obj_idx):
+        """Map model-side object index to client-side object id."""
+        return inference_state["obj_idx_to_id"][obj_idx]
+
+    def _get_obj_num(self, inference_state):
+        """Get the total number of unique object ids received so far in this session."""
+        return len(inference_state["obj_idx_to_id"])
+
+    @torch.inference_mode()
+    def add_new_points_or_box(
+        self,
+        inference_state,
+        frame_idx,
+        obj_id,
+        points=None,
+        labels=None,
+        clear_old_points=True,
+        normalize_coords=True,
+        box=None,
+    ):
+        """Add new points to a frame."""
+        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
+        point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
+        mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
+
+        if (points is not None) != (labels is not None):
+            raise ValueError("points and labels must be provided together")
+        if points is None and box is None:
+            raise ValueError("at least one of points or box must be provided as input")
+
+        if points is None:
+            points = torch.zeros(0, 2, dtype=torch.float32)
+        elif not isinstance(points, torch.Tensor):
+            points = torch.tensor(points, dtype=torch.float32)
+        if labels is None:
+            labels = torch.zeros(0, dtype=torch.int32)
+        elif not isinstance(labels, torch.Tensor):
+            labels = torch.tensor(labels, dtype=torch.int32)
+        if points.dim() == 2:
+            points = points.unsqueeze(0)  # add batch dimension
+        if labels.dim() == 1:
+            labels = labels.unsqueeze(0)  # add batch dimension
+
+        # If `box` is provided, we add it as the first two points with labels 2 and 3
+        # along with the user-provided points (consistent with how SAM 2 is trained).
+        if box is not None:
+            if not clear_old_points:
+                raise ValueError(
+                    "cannot add box without clearing old points, since "
+                    "box prompt must be provided before any point prompt "
+                    "(please use clear_old_points=True instead)"
+                )
+            if inference_state["tracking_has_started"]:
+                warnings.warn(
+                    "You are adding a box after tracking starts. SAM 2 may not always be "
+                    "able to incorporate a box prompt for *refinement*. If you intend to "
+                    "use box prompt as an *initial* input before tracking, please call "
+                    "'reset_state' on the inference state to restart from scratch.",
+                    category=UserWarning,
+                    stacklevel=2,
+                )
+            if not isinstance(box, torch.Tensor):
+                box = torch.tensor(box, dtype=torch.float32, device=points.device)
+            box_coords = box.reshape(1, 2, 2)
+            box_labels = torch.tensor([2, 3], dtype=torch.int32, device=labels.device)
+            box_labels = box_labels.reshape(1, 2)
+            points = torch.cat([box_coords, points], dim=1)
+            labels = torch.cat([box_labels, labels], dim=1)
+
+        if normalize_coords:
+            video_H = inference_state["video_height"]
+            video_W = inference_state["video_width"]
+            points = points / torch.tensor([video_W, video_H]).to(points.device)
+        # scale the (normalized) coordinates by the model's internal image size
+        points = points * self.image_size
+        points = points.to(inference_state["device"])
+        labels = labels.to(inference_state["device"])
+
+        if not clear_old_points:
+            point_inputs = point_inputs_per_frame.get(frame_idx, None)
+        else:
+            point_inputs = None
+        point_inputs = concat_points(point_inputs, points, labels)
+
+        point_inputs_per_frame[frame_idx] = point_inputs
+        mask_inputs_per_frame.pop(frame_idx, None)
+        # If this frame hasn't been tracked before, we treat it as an initial conditioning
+        # frame, meaning that the inputs points are to generate segments on this frame without
+        # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
+        # the input points will be used to correct the already tracked masks.
+        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
+        # whether to track in reverse time order
+        if is_init_cond_frame:
+            reverse = False
+        else:
+            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
+        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
+        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
+        # Add a frame to conditioning output if it's an initial conditioning frame or
+        # if the model sees all frames receiving clicks/mask as conditioning frames.
+        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
+        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+
+        # Get any previously predicted mask logits on this object and feed it along with
+        # the new clicks into the SAM mask decoder.
+        prev_sam_mask_logits = None
+        # lookup temporary output dict first, which contains the most recent output
+        # (if not found, then lookup conditioning and non-conditioning frame output)
+        prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
+        if prev_out is None:
+            prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
+            if prev_out is None:
+                prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
+
+        if prev_out is not None and prev_out["pred_masks"] is not None:
+            device = inference_state["device"]
+            prev_sam_mask_logits = prev_out["pred_masks"].to(device, non_blocking=True)
+            # Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
+            prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
+        current_out, _ = self._run_single_frame_inference(
+            inference_state=inference_state,
+            output_dict=obj_output_dict,  # run on the slice of a single object
+            frame_idx=frame_idx,
+            batch_size=1,  # run on the slice of a single object
+            is_init_cond_frame=is_init_cond_frame,
+            point_inputs=point_inputs,
+            mask_inputs=None,
+            reverse=reverse,
+            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
+            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
+            # allows us to enforce non-overlapping constraints on all objects before encoding
+            # them into memory.
+            run_mem_encoder=False,
+            prev_sam_mask_logits=prev_sam_mask_logits,
+        )
+        # Add the output to the output dict (to be used as future memory)
+        obj_temp_output_dict[storage_key][frame_idx] = current_out
+
+        # Resize the output mask to the original video resolution
+        obj_ids = inference_state["obj_ids"]
+        consolidated_out = self._consolidate_temp_output_across_obj(
+            inference_state,
+            frame_idx,
+            is_cond=is_cond,
+            run_mem_encoder=False,
+            consolidate_at_video_res=True,
+        )
+        _, video_res_masks = self._get_orig_video_res_output(
+            inference_state, consolidated_out["pred_masks_video_res"]
+        )
+        return frame_idx, obj_ids, video_res_masks
+
+    def add_new_points(self, *args, **kwargs):
+        """Deprecated method. Please use `add_new_points_or_box` instead."""
+        return self.add_new_points_or_box(*args, **kwargs)
+
+    @torch.inference_mode()
+    def add_new_mask(
+        self,
+        inference_state,
+        frame_idx,
+        obj_id,
+        mask,
+    ):
+        """Add new mask to a frame."""
+        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
+        point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
+        mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
+
+        if not isinstance(mask, torch.Tensor):
+            mask = torch.tensor(mask, dtype=torch.bool)
+        assert mask.dim() == 2
+        mask_H, mask_W = mask.shape
+        mask_inputs_orig = mask[None, None]  # add batch and channel dimension
+        mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
+
+        # resize the mask if it doesn't match the model's image size
+        if mask_H != self.image_size or mask_W != self.image_size:
+            mask_inputs = torch.nn.functional.interpolate(
+                mask_inputs_orig,
+                size=(self.image_size, self.image_size),
+                align_corners=False,
+                mode="bilinear",
+                antialias=True,  # use antialias for downsampling
+            )
+            mask_inputs = (mask_inputs >= 0.5).float()
+        else:
+            mask_inputs = mask_inputs_orig
+
+        mask_inputs_per_frame[frame_idx] = mask_inputs
+        point_inputs_per_frame.pop(frame_idx, None)
+        # If this frame hasn't been tracked before, we treat it as an initial conditioning
+        # frame, meaning that the inputs points are to generate segments on this frame without
+        # using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
+        # the input points will be used to correct the already tracked masks.
+        is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
+        # whether to track in reverse time order
+        if is_init_cond_frame:
+            reverse = False
+        else:
+            reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
+        obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
+        obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
+        # Add a frame to conditioning output if it's an initial conditioning frame or
+        # if the model sees all frames receiving clicks/mask as conditioning frames.
+        is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
+        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+
+        current_out, _ = self._run_single_frame_inference(
+            inference_state=inference_state,
+            output_dict=obj_output_dict,  # run on the slice of a single object
+            frame_idx=frame_idx,
+            batch_size=1,  # run on the slice of a single object
+            is_init_cond_frame=is_init_cond_frame,
+            point_inputs=None,
+            mask_inputs=mask_inputs,
+            reverse=reverse,
+            # Skip the memory encoder when adding clicks or mask. We execute the memory encoder
+            # at the beginning of `propagate_in_video` (after user finalize their clicks). This
+            # allows us to enforce non-overlapping constraints on all objects before encoding
+            # them into memory.
+            run_mem_encoder=False,
+        )
+        # Add the output to the output dict (to be used as future memory)
+        obj_temp_output_dict[storage_key][frame_idx] = current_out
+
+        # Resize the output mask to the original video resolution
+        obj_ids = inference_state["obj_ids"]
+        consolidated_out = self._consolidate_temp_output_across_obj(
+            inference_state,
+            frame_idx,
+            is_cond=is_cond,
+            run_mem_encoder=False,
+            consolidate_at_video_res=True,
+        )
+        _, video_res_masks = self._get_orig_video_res_output(
+            inference_state, consolidated_out["pred_masks_video_res"]
+        )
+        return frame_idx, obj_ids, video_res_masks
+
+    def _get_orig_video_res_output(self, inference_state, any_res_masks):
+        """
+        Resize the object scores to the original video resolution (video_res_masks)
+        and apply non-overlapping constraints for final output.
+        """
+        device = inference_state["device"]
+        video_H = inference_state["video_height"]
+        video_W = inference_state["video_width"]
+        any_res_masks = any_res_masks.to(device, non_blocking=True)
+        if any_res_masks.shape[-2:] == (video_H, video_W):
+            video_res_masks = any_res_masks
+        else:
+            video_res_masks = torch.nn.functional.interpolate(
+                any_res_masks,
+                size=(video_H, video_W),
+                mode="bilinear",
+                align_corners=False,
+            )
+        if self.non_overlap_masks:
+            video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
+        return any_res_masks, video_res_masks
+
+    def _consolidate_temp_output_across_obj(
+        self,
+        inference_state,
+        frame_idx,
+        is_cond,
+        run_mem_encoder,
+        consolidate_at_video_res=False,
+    ):
+        """
+        Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
+        a frame into a single output for all objects, including
+        1) fill any missing objects either from `output_dict_per_obj` (if they exist in
+           `output_dict_per_obj` for this frame) or leave them as placeholder values
+           (if they don't exist in `output_dict_per_obj` for this frame);
+        2) if specified, rerun memory encoder after apply non-overlapping constraints
+           on the object scores.
+        """
+        batch_size = self._get_obj_num(inference_state)
+        storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+        # Optionally, we allow consolidating the temporary outputs at the original
+        # video resolution (to provide a better editing experience for mask prompts).
+        if consolidate_at_video_res:
+            assert not run_mem_encoder, "memory encoder cannot run at video resolution"
+            consolidated_H = inference_state["video_height"]
+            consolidated_W = inference_state["video_width"]
+            consolidated_mask_key = "pred_masks_video_res"
+        else:
+            consolidated_H = consolidated_W = self.image_size // 4
+            consolidated_mask_key = "pred_masks"
+
+        # Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
+        # will be added when rerunning the memory encoder after applying non-overlapping
+        # constraints to object scores. Its "pred_masks" are prefilled with a large
+        # negative value (NO_OBJ_SCORE) to represent missing objects.
+        consolidated_out = {
+            "maskmem_features": None,
+            "maskmem_pos_enc": None,
+            consolidated_mask_key: torch.full(
+                size=(batch_size, 1, consolidated_H, consolidated_W),
+                fill_value=NO_OBJ_SCORE,
+                dtype=torch.float32,
+                device=inference_state["storage_device"],
+            ),
+            "obj_ptr": torch.full(
+                size=(batch_size, self.hidden_dim),
+                fill_value=NO_OBJ_SCORE,
+                dtype=torch.float32,
+                device=inference_state["device"],
+            ),
+            "object_score_logits": torch.full(
+                size=(batch_size, 1),
+                # default to 10.0 for object_score_logits, i.e. assuming the object is
+                # present as sigmoid(10)=1, same as in `predict_masks` of `MaskDecoder`
+                fill_value=10.0,
+                dtype=torch.float32,
+                device=inference_state["device"],
+            ),
+        }
+        empty_mask_ptr = None
+        for obj_idx in range(batch_size):
+            obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
+            obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
+            out = obj_temp_output_dict[storage_key].get(frame_idx, None)
+            # If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
+            # we fall back and look up its previous output in "output_dict_per_obj".
+            # We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
+            # "output_dict_per_obj" to find a previous output for this object.
+            if out is None:
+                out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
+            if out is None:
+                out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
+            # If the object doesn't appear in "output_dict_per_obj" either, we skip it
+            # and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
+            # placeholder above) and set its object pointer to be a dummy pointer.
+            if out is None:
+                # Fill in dummy object pointers for those objects without any inputs or
+                # tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
+                # i.e. when we need to build the memory for tracking).
+                if run_mem_encoder:
+                    if empty_mask_ptr is None:
+                        empty_mask_ptr = self._get_empty_mask_ptr(
+                            inference_state, frame_idx
+                        )
+                    # fill object pointer with a dummy pointer (based on an empty mask)
+                    consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
+                continue
+            # Add the temporary object output mask to consolidated output mask
+            obj_mask = out["pred_masks"]
+            consolidated_pred_masks = consolidated_out[consolidated_mask_key]
+            if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
+                consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
+            else:
+                # Resize first if temporary object mask has a different resolution
+                resized_obj_mask = torch.nn.functional.interpolate(
+                    obj_mask,
+                    size=consolidated_pred_masks.shape[-2:],
+                    mode="bilinear",
+                    align_corners=False,
+                )
+                consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
+            consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
+            consolidated_out["object_score_logits"][obj_idx : obj_idx + 1] = out[
+                "object_score_logits"
+            ]
+
+        # Optionally, apply non-overlapping constraints on the consolidated scores
+        # and rerun the memory encoder
+        if run_mem_encoder:
+            device = inference_state["device"]
+            high_res_masks = torch.nn.functional.interpolate(
+                consolidated_out["pred_masks"].to(device, non_blocking=True),
+                size=(self.image_size, self.image_size),
+                mode="bilinear",
+                align_corners=False,
+            )
+            if self.non_overlap_masks_for_mem_enc:
+                high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
+            maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
+                inference_state=inference_state,
+                frame_idx=frame_idx,
+                batch_size=batch_size,
+                high_res_masks=high_res_masks,
+                object_score_logits=consolidated_out["object_score_logits"],
+                is_mask_from_pts=True,  # these frames are what the user interacted with
+            )
+            consolidated_out["maskmem_features"] = maskmem_features
+            consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
+
+        return consolidated_out
+
+    def _get_empty_mask_ptr(self, inference_state, frame_idx):
+        """Get a dummy object pointer based on an empty mask on the current frame."""
+        # A dummy (empty) mask with a single object
+        batch_size = 1
+        mask_inputs = torch.zeros(
+            (batch_size, 1, self.image_size, self.image_size),
+            dtype=torch.float32,
+            device=inference_state["device"],
+        )
+
+        # Retrieve correct image features
+        (
+            _,
+            _,
+            current_vision_feats,
+            current_vision_pos_embeds,
+            feat_sizes,
+        ) = self._get_image_feature(inference_state, frame_idx, batch_size)
+
+        # Feed the empty mask and image feature above to get a dummy object pointer
+        current_out = self.track_step(
+            frame_idx=frame_idx,
+            is_init_cond_frame=True,
+            current_vision_feats=current_vision_feats,
+            current_vision_pos_embeds=current_vision_pos_embeds,
+            feat_sizes=feat_sizes,
+            point_inputs=None,
+            mask_inputs=mask_inputs,
+            output_dict={},
+            num_frames=inference_state["num_frames"],
+            track_in_reverse=False,
+            run_mem_encoder=False,
+            prev_sam_mask_logits=None,
+        )
+        return current_out["obj_ptr"]
+
+    @torch.inference_mode()
+    def propagate_in_video_preflight(self, inference_state):
+        """Prepare inference_state and consolidate temporary outputs before tracking."""
+        # Tracking has started and we don't allow adding new objects until session is reset.
+        inference_state["tracking_has_started"] = True
+        batch_size = self._get_obj_num(inference_state)
+
+        # Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
+        # add them into "output_dict".
+        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
+        output_dict = inference_state["output_dict"]
+        # "consolidated_frame_inds" contains indices of those frames where consolidated
+        # temporary outputs have been added (either in this call or any previous calls
+        # to `propagate_in_video_preflight`).
+        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
+        for is_cond in [False, True]:
+            # Separately consolidate conditioning and non-conditioning temp outputs
+            storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
+            # Find all the frames that contain temporary outputs for any objects
+            # (these should be the frames that have just received clicks for mask inputs
+            # via `add_new_points_or_box` or `add_new_mask`)
+            temp_frame_inds = set()
+            for obj_temp_output_dict in temp_output_dict_per_obj.values():
+                temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
+            consolidated_frame_inds[storage_key].update(temp_frame_inds)
+            # consolidate the temporary output across all objects on this frame
+            for frame_idx in temp_frame_inds:
+                consolidated_out = self._consolidate_temp_output_across_obj(
+                    inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
+                )
+                # merge them into "output_dict" and also create per-object slices
+                output_dict[storage_key][frame_idx] = consolidated_out
+                self._add_output_per_object(
+                    inference_state, frame_idx, consolidated_out, storage_key
+                )
+                clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
+                    self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
+                )
+                if clear_non_cond_mem:
+                    # clear non-conditioning memory of the surrounding frames
+                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
+
+            # clear temporary outputs in `temp_output_dict_per_obj`
+            for obj_temp_output_dict in temp_output_dict_per_obj.values():
+                obj_temp_output_dict[storage_key].clear()
+
+        # edge case: if an output is added to "cond_frame_outputs", we remove any prior
+        # output on the same frame in "non_cond_frame_outputs"
+        for frame_idx in output_dict["cond_frame_outputs"]:
+            output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
+        for obj_output_dict in inference_state["output_dict_per_obj"].values():
+            for frame_idx in obj_output_dict["cond_frame_outputs"]:
+                obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
+        for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
+            assert frame_idx in output_dict["cond_frame_outputs"]
+            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
+
+        # Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
+        # with either points or mask inputs (which should be true under a correct workflow).
+        all_consolidated_frame_inds = (
+            consolidated_frame_inds["cond_frame_outputs"]
+            | consolidated_frame_inds["non_cond_frame_outputs"]
+        )
+        input_frames_inds = set()
+        for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
+            input_frames_inds.update(point_inputs_per_frame.keys())
+        for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
+            input_frames_inds.update(mask_inputs_per_frame.keys())
+        assert all_consolidated_frame_inds == input_frames_inds
+
+    @torch.inference_mode()
+    def propagate_in_video(
+        self,
+        inference_state,
+        start_frame_idx=None,
+        max_frame_num_to_track=None,
+        reverse=False,
+    ):
+        """Propagate the input points across frames to track in the entire video."""
+        self.propagate_in_video_preflight(inference_state)
+
+        output_dict = inference_state["output_dict"]
+        consolidated_frame_inds = inference_state["consolidated_frame_inds"]
+        obj_ids = inference_state["obj_ids"]
+        num_frames = inference_state["num_frames"]
+        batch_size = self._get_obj_num(inference_state)
+        if len(output_dict["cond_frame_outputs"]) == 0:
+            raise RuntimeError("No points are provided; please add points first")
+        clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
+            self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
+        )
+
+        # set start index, end index, and processing order
+        if start_frame_idx is None:
+            # default: start from the earliest frame with input points
+            start_frame_idx = min(output_dict["cond_frame_outputs"])
+        if max_frame_num_to_track is None:
+            # default: track all the frames in the video
+            max_frame_num_to_track = num_frames
+        if reverse:
+            end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
+            if start_frame_idx > 0:
+                processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
+            else:
+                processing_order = []  # skip reverse tracking if starting from frame 0
+        else:
+            end_frame_idx = min(
+                start_frame_idx + max_frame_num_to_track, num_frames - 1
+            )
+            processing_order = range(start_frame_idx, end_frame_idx + 1)
+
+        for frame_idx in tqdm(processing_order, desc="propagate in video"):
+            # We skip those frames already in consolidated outputs (these are frames
+            # that received input clicks or mask). Note that we cannot directly run
+            # batched forward on them via `_run_single_frame_inference` because the
+            # number of clicks on each object might be different.
+            if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
+                storage_key = "cond_frame_outputs"
+                current_out = output_dict[storage_key][frame_idx]
+                pred_masks = current_out["pred_masks"]
+                if clear_non_cond_mem:
+                    # clear non-conditioning memory of the surrounding frames
+                    self._clear_non_cond_mem_around_input(inference_state, frame_idx)
+            elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
+                storage_key = "non_cond_frame_outputs"
+                current_out = output_dict[storage_key][frame_idx]
+                pred_masks = current_out["pred_masks"]
+            else:
+                storage_key = "non_cond_frame_outputs"
+                current_out, pred_masks = self._run_single_frame_inference(
+                    inference_state=inference_state,
+                    output_dict=output_dict,
+                    frame_idx=frame_idx,
+                    batch_size=batch_size,
+                    is_init_cond_frame=False,
+                    point_inputs=None,
+                    mask_inputs=None,
+                    reverse=reverse,
+                    run_mem_encoder=True,
+                )
+                output_dict[storage_key][frame_idx] = current_out
+            # Create slices of per-object outputs for subsequent interaction with each
+            # individual object after tracking.
+            self._add_output_per_object(
+                inference_state, frame_idx, current_out, storage_key
+            )
+            inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
+
+            # Resize the output mask to the original video resolution (we directly use
+            # the mask scores on GPU for output to avoid any CPU conversion in between)
+            _, video_res_masks = self._get_orig_video_res_output(
+                inference_state, pred_masks
+            )
+            yield frame_idx, obj_ids, video_res_masks
+
+    def _add_output_per_object(
+        self, inference_state, frame_idx, current_out, storage_key
+    ):
+        """
+        Split a multi-object output into per-object output slices and add them into
+        `output_dict_per_obj`. The resulting slices share the same tensor storage.
+        """
+        maskmem_features = current_out["maskmem_features"]
+        assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
+
+        maskmem_pos_enc = current_out["maskmem_pos_enc"]
+        assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
+
+        output_dict_per_obj = inference_state["output_dict_per_obj"]
+        for obj_idx, obj_output_dict in output_dict_per_obj.items():
+            obj_slice = slice(obj_idx, obj_idx + 1)
+            obj_out = {
+                "maskmem_features": None,
+                "maskmem_pos_enc": None,
+                "pred_masks": current_out["pred_masks"][obj_slice],
+                "obj_ptr": current_out["obj_ptr"][obj_slice],
+                "object_score_logits": current_out["object_score_logits"][obj_slice],
+            }
+            if maskmem_features is not None:
+                obj_out["maskmem_features"] = maskmem_features[obj_slice]
+            if maskmem_pos_enc is not None:
+                obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
+            obj_output_dict[storage_key][frame_idx] = obj_out
+
+    @torch.inference_mode()
+    def clear_all_prompts_in_frame(
+        self, inference_state, frame_idx, obj_id, need_output=True
+    ):
+        """Remove all input points or mask in a specific frame for a given object."""
+        obj_idx = self._obj_id_to_idx(inference_state, obj_id)
+
+        # Clear the conditioning information on the given frame
+        inference_state["point_inputs_per_obj"][obj_idx].pop(frame_idx, None)
+        inference_state["mask_inputs_per_obj"][obj_idx].pop(frame_idx, None)
+
+        temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
+        temp_output_dict_per_obj[obj_idx]["cond_frame_outputs"].pop(frame_idx, None)
+        temp_output_dict_per_obj[obj_idx]["non_cond_frame_outputs"].pop(frame_idx, None)
+
+        # Check and see if there are still any inputs left on this frame
+        batch_size = self._get_obj_num(inference_state)
+        frame_has_input = False
+        for obj_idx2 in range(batch_size):
+            if frame_idx in inference_state["point_inputs_per_obj"][obj_idx2]:
+                frame_has_input = True
+                break
+            if frame_idx in inference_state["mask_inputs_per_obj"][obj_idx2]:
+                frame_has_input = True
+                break
+
+        # If this frame has no remaining inputs for any objects, we further clear its
+        # conditioning frame status
+        if not frame_has_input:
+            output_dict = inference_state["output_dict"]
+            consolidated_frame_inds = inference_state["consolidated_frame_inds"]
+            consolidated_frame_inds["cond_frame_outputs"].discard(frame_idx)
+            consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
+            # Remove the frame's conditioning output (possibly downgrading it to non-conditioning)
+            out = output_dict["cond_frame_outputs"].pop(frame_idx, None)
+            if out is not None:
+                # The frame is not a conditioning frame anymore since it's not receiving inputs,
+                # so we "downgrade" its output (if exists) to a non-conditioning frame output.
+                output_dict["non_cond_frame_outputs"][frame_idx] = out
+                inference_state["frames_already_tracked"].pop(frame_idx, None)
+            # Similarly, do it for the sliced output on each object.
+            for obj_idx2 in range(batch_size):
+                obj_output_dict = inference_state["output_dict_per_obj"][obj_idx2]
+                obj_out = obj_output_dict["cond_frame_outputs"].pop(frame_idx, None)
+                if obj_out is not None:
+                    obj_output_dict["non_cond_frame_outputs"][frame_idx] = obj_out
+
+            # If all the conditioning frames have been removed, we also clear the tracking outputs
+            if len(output_dict["cond_frame_outputs"]) == 0:
+                self._reset_tracking_results(inference_state)
+
+        if not need_output:
+            return
+        # Finally, output updated masks per object (after removing the inputs above)
+        obj_ids = inference_state["obj_ids"]
+        is_cond = any(
+            frame_idx in obj_temp_output_dict["cond_frame_outputs"]
+            for obj_temp_output_dict in temp_output_dict_per_obj.values()
+        )
+        consolidated_out = self._consolidate_temp_output_across_obj(
+            inference_state,
+            frame_idx,
+            is_cond=is_cond,
+            run_mem_encoder=False,
+            consolidate_at_video_res=True,
+        )
+        _, video_res_masks = self._get_orig_video_res_output(
+            inference_state, consolidated_out["pred_masks_video_res"]
+        )
+        return frame_idx, obj_ids, video_res_masks
+
+    @torch.inference_mode()
+    def reset_state(self, inference_state):
+        """Remove all input points or mask in all frames throughout the video."""
+        self._reset_tracking_results(inference_state)
+        # Remove all object ids
+        inference_state["obj_id_to_idx"].clear()
+        inference_state["obj_idx_to_id"].clear()
+        inference_state["obj_ids"].clear()
+        inference_state["point_inputs_per_obj"].clear()
+        inference_state["mask_inputs_per_obj"].clear()
+        inference_state["output_dict_per_obj"].clear()
+        inference_state["temp_output_dict_per_obj"].clear()
+
+    def _reset_tracking_results(self, inference_state):
+        """Reset all tracking inputs and results across the videos."""
+        for v in inference_state["point_inputs_per_obj"].values():
+            v.clear()
+        for v in inference_state["mask_inputs_per_obj"].values():
+            v.clear()
+        for v in inference_state["output_dict_per_obj"].values():
+            v["cond_frame_outputs"].clear()
+            v["non_cond_frame_outputs"].clear()
+        for v in inference_state["temp_output_dict_per_obj"].values():
+            v["cond_frame_outputs"].clear()
+            v["non_cond_frame_outputs"].clear()
+        inference_state["output_dict"]["cond_frame_outputs"].clear()
+        inference_state["output_dict"]["non_cond_frame_outputs"].clear()
+        inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
+        inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
+        inference_state["tracking_has_started"] = False
+        inference_state["frames_already_tracked"].clear()
+
+    def _get_image_feature(self, inference_state, frame_idx, batch_size):
+        """Compute the image features on a given frame."""
+        # Look up in the cache first
+        image, backbone_out = inference_state["cached_features"].get(
+            frame_idx, (None, None)
+        )
+        if backbone_out is None:
+            # Cache miss -- we will run inference on a single image
+            device = inference_state["device"]
+            image = inference_state["images"][frame_idx].to(device).float().unsqueeze(0)
+            backbone_out = self.forward_image(image)
+            # Cache the most recent frame's feature (for repeated interactions with
+            # a frame; we can use an LRU cache for more frames in the future).
+            inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
+
+        # expand the features to have the same dimension as the number of objects
+        expanded_image = image.expand(batch_size, -1, -1, -1)
+        expanded_backbone_out = {
+            "backbone_fpn": backbone_out["backbone_fpn"].copy(),
+            "vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
+        }
+        for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
+            expanded_backbone_out["backbone_fpn"][i] = feat.expand(
+                batch_size, -1, -1, -1
+            )
+        for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
+            pos = pos.expand(batch_size, -1, -1, -1)
+            expanded_backbone_out["vision_pos_enc"][i] = pos
+
+        features = self._prepare_backbone_features(expanded_backbone_out)
+        features = (expanded_image,) + features
+        return features
+
+    def _run_single_frame_inference(
+        self,
+        inference_state,
+        output_dict,
+        frame_idx,
+        batch_size,
+        is_init_cond_frame,
+        point_inputs,
+        mask_inputs,
+        reverse,
+        run_mem_encoder,
+        prev_sam_mask_logits=None,
+    ):
+        """Run tracking on a single frame based on current inputs and previous memory."""
+        # Retrieve correct image features
+        (
+            _,
+            _,
+            current_vision_feats,
+            current_vision_pos_embeds,
+            feat_sizes,
+        ) = self._get_image_feature(inference_state, frame_idx, batch_size)
+
+        # point and mask should not appear as input simultaneously on the same frame
+        assert point_inputs is None or mask_inputs is None
+        current_out = self.track_step(
+            frame_idx=frame_idx,
+            is_init_cond_frame=is_init_cond_frame,
+            current_vision_feats=current_vision_feats,
+            current_vision_pos_embeds=current_vision_pos_embeds,
+            feat_sizes=feat_sizes,
+            point_inputs=point_inputs,
+            mask_inputs=mask_inputs,
+            output_dict=output_dict,
+            num_frames=inference_state["num_frames"],
+            track_in_reverse=reverse,
+            run_mem_encoder=run_mem_encoder,
+            prev_sam_mask_logits=prev_sam_mask_logits,
+        )
+
+        # optionally offload the output to CPU memory to save GPU space
+        storage_device = inference_state["storage_device"]
+        maskmem_features = current_out["maskmem_features"]
+        if maskmem_features is not None:
+            maskmem_features = maskmem_features.to(torch.bfloat16)
+            maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
+        pred_masks_gpu = current_out["pred_masks"]
+        # potentially fill holes in the predicted masks
+        if self.fill_hole_area > 0:
+            pred_masks_gpu = fill_holes_in_mask_scores(
+                pred_masks_gpu, self.fill_hole_area
+            )
+        pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
+        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
+        maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
+        # object pointer is a small tensor, so we always keep it on GPU memory for fast access
+        obj_ptr = current_out["obj_ptr"]
+        object_score_logits = current_out["object_score_logits"]
+        # make a compact version of this frame's output to reduce the state size
+        compact_current_out = {
+            "maskmem_features": maskmem_features,
+            "maskmem_pos_enc": maskmem_pos_enc,
+            "pred_masks": pred_masks,
+            "obj_ptr": obj_ptr,
+            "object_score_logits": object_score_logits,
+        }
+        return compact_current_out, pred_masks_gpu
+
+    def _run_memory_encoder(
+        self,
+        inference_state,
+        frame_idx,
+        batch_size,
+        high_res_masks,
+        object_score_logits,
+        is_mask_from_pts,
+    ):
+        """
+        Run the memory encoder on `high_res_masks`. This is usually after applying
+        non-overlapping constraints to object scores. Since their scores changed, their
+        memory also need to be computed again with the memory encoder.
+        """
+        # Retrieve correct image features
+        _, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
+            inference_state, frame_idx, batch_size
+        )
+        maskmem_features, maskmem_pos_enc = self._encode_new_memory(
+            current_vision_feats=current_vision_feats,
+            feat_sizes=feat_sizes,
+            pred_masks_high_res=high_res_masks,
+            object_score_logits=object_score_logits,
+            is_mask_from_pts=is_mask_from_pts,
+        )
+
+        # optionally offload the output to CPU memory to save GPU space
+        storage_device = inference_state["storage_device"]
+        maskmem_features = maskmem_features.to(torch.bfloat16)
+        maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
+        # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
+        maskmem_pos_enc = self._get_maskmem_pos_enc(
+            inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
+        )
+        return maskmem_features, maskmem_pos_enc
+
+    def _get_maskmem_pos_enc(self, inference_state, current_out):
+        """
+        `maskmem_pos_enc` is the same across frames and objects, so we cache it as
+        a constant in the inference session to reduce session storage size.
+        """
+        model_constants = inference_state["constants"]
+        # "out_maskmem_pos_enc" should be either a list of tensors or None
+        out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
+        if out_maskmem_pos_enc is not None:
+            if "maskmem_pos_enc" not in model_constants:
+                assert isinstance(out_maskmem_pos_enc, list)
+                # only take the slice for one object, since it's same across objects
+                maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
+                model_constants["maskmem_pos_enc"] = maskmem_pos_enc
+            else:
+                maskmem_pos_enc = model_constants["maskmem_pos_enc"]
+            # expand the cached maskmem_pos_enc to the actual batch size
+            batch_size = out_maskmem_pos_enc[0].size(0)
+            expanded_maskmem_pos_enc = [
+                x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
+            ]
+        else:
+            expanded_maskmem_pos_enc = None
+        return expanded_maskmem_pos_enc
+
+    @torch.inference_mode()
+    def remove_object(self, inference_state, obj_id, strict=False, need_output=True):
+        """
+        Remove an object id from the tracking state. If strict is True, we check whether
+        the object id actually exists and raise an error if it doesn't exist.
+        """
+        old_obj_idx_to_rm = inference_state["obj_id_to_idx"].get(obj_id, None)
+        updated_frames = []
+        # Check whether this object_id to remove actually exists and possibly raise an error.
+        if old_obj_idx_to_rm is None:
+            if not strict:
+                return inference_state["obj_ids"], updated_frames
+            raise RuntimeError(
+                f"Cannot remove object id {obj_id} as it doesn't exist. "
+                f"All existing object ids: {inference_state['obj_ids']}."
+            )
+
+        # If this is the only remaining object id, we simply reset the state.
+        if len(inference_state["obj_id_to_idx"]) == 1:
+            self.reset_state(inference_state)
+            return inference_state["obj_ids"], updated_frames
+
+        # There are still remaining objects after removing this object id. In this case,
+        # we need to delete the object storage from inference state tensors.
+        # Step 0: clear the input on those frames where this object id has point or mask input
+        # (note that this step is required as it might downgrade conditioning frames to
+        # non-conditioning ones)
+        obj_input_frames_inds = set()
+        obj_input_frames_inds.update(
+            inference_state["point_inputs_per_obj"][old_obj_idx_to_rm]
+        )
+        obj_input_frames_inds.update(
+            inference_state["mask_inputs_per_obj"][old_obj_idx_to_rm]
+        )
+        for frame_idx in obj_input_frames_inds:
+            self.clear_all_prompts_in_frame(
+                inference_state, frame_idx, obj_id, need_output=False
+            )
+
+        # Step 1: Update the object id mapping (note that it must be done after Step 0,
+        # since Step 0 still requires the old object id mappings in inference_state)
+        old_obj_ids = inference_state["obj_ids"]
+        old_obj_inds = list(range(len(old_obj_ids)))
+        remain_old_obj_inds = old_obj_inds.copy()
+        remain_old_obj_inds.remove(old_obj_idx_to_rm)
+        new_obj_ids = [old_obj_ids[old_idx] for old_idx in remain_old_obj_inds]
+        new_obj_inds = list(range(len(new_obj_ids)))
+        # build new mappings
+        old_idx_to_new_idx = dict(zip(remain_old_obj_inds, new_obj_inds))
+        inference_state["obj_id_to_idx"] = dict(zip(new_obj_ids, new_obj_inds))
+        inference_state["obj_idx_to_id"] = dict(zip(new_obj_inds, new_obj_ids))
+        inference_state["obj_ids"] = new_obj_ids
+
+        # Step 2: For per-object tensor storage, we shift their obj_idx in the dict keys.
+        # (note that "consolidated_frame_inds" doesn't need to be updated in this step as
+        # it's already handled in Step 0)
+        def _map_keys(container):
+            new_kvs = []
+            for k in old_obj_inds:
+                v = container.pop(k)
+                if k in old_idx_to_new_idx:
+                    new_kvs.append((old_idx_to_new_idx[k], v))
+            container.update(new_kvs)
+
+        _map_keys(inference_state["point_inputs_per_obj"])
+        _map_keys(inference_state["mask_inputs_per_obj"])
+        _map_keys(inference_state["output_dict_per_obj"])
+        _map_keys(inference_state["temp_output_dict_per_obj"])
+
+        # Step 3: For packed tensor storage, we index the remaining ids and rebuild the per-object slices.
+        def _slice_state(output_dict, storage_key):
+            for frame_idx, out in output_dict[storage_key].items():
+                out["maskmem_features"] = out["maskmem_features"][remain_old_obj_inds]
+                out["maskmem_pos_enc"] = [
+                    x[remain_old_obj_inds] for x in out["maskmem_pos_enc"]
+                ]
+                # "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
+                out["maskmem_pos_enc"] = self._get_maskmem_pos_enc(inference_state, out)
+                out["pred_masks"] = out["pred_masks"][remain_old_obj_inds]
+                out["obj_ptr"] = out["obj_ptr"][remain_old_obj_inds]
+                out["object_score_logits"] = out["object_score_logits"][
+                    remain_old_obj_inds
+                ]
+                # also update the per-object slices
+                self._add_output_per_object(
+                    inference_state, frame_idx, out, storage_key
+                )
+
+        _slice_state(inference_state["output_dict"], "cond_frame_outputs")
+        _slice_state(inference_state["output_dict"], "non_cond_frame_outputs")
+
+        # Step 4: Further collect the outputs on those frames in `obj_input_frames_inds`, which
+        # could show an updated mask for objects previously occluded by the object being removed
+        if need_output:
+            temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
+            for frame_idx in obj_input_frames_inds:
+                is_cond = any(
+                    frame_idx in obj_temp_output_dict["cond_frame_outputs"]
+                    for obj_temp_output_dict in temp_output_dict_per_obj.values()
+                )
+                consolidated_out = self._consolidate_temp_output_across_obj(
+                    inference_state,
+                    frame_idx,
+                    is_cond=is_cond,
+                    run_mem_encoder=False,
+                    consolidate_at_video_res=True,
+                )
+                _, video_res_masks = self._get_orig_video_res_output(
+                    inference_state, consolidated_out["pred_masks_video_res"]
+                )
+                updated_frames.append((frame_idx, video_res_masks))
+
+        return inference_state["obj_ids"], updated_frames
+
+    def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
+        """
+        Remove the non-conditioning memory around the input frame. When users provide
+        correction clicks, the surrounding frames' non-conditioning memories can still
+        contain outdated object appearance information and could confuse the model.
+
+        This method clears those non-conditioning memories surrounding the interacted
+        frame to avoid giving the model both old and new information about the object.
+        """
+        r = self.memory_temporal_stride_for_eval
+        frame_idx_begin = frame_idx - r * self.num_maskmem
+        frame_idx_end = frame_idx + r * self.num_maskmem
+        output_dict = inference_state["output_dict"]
+        non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
+        for t in range(frame_idx_begin, frame_idx_end + 1):
+            non_cond_frame_outputs.pop(t, None)
+            for obj_output_dict in inference_state["output_dict_per_obj"].values():
+                obj_output_dict["non_cond_frame_outputs"].pop(t, None)
diff --git a/sam2/utils/__init__.py b/sam2/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..5277f46157403e47fd830fc519144b97ef69d4ae
--- /dev/null
+++ b/sam2/utils/__init__.py
@@ -0,0 +1,5 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
diff --git a/sam2/utils/__pycache__/__init__.cpython-311.pyc b/sam2/utils/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..91b3b50c160247e6dff38ad5d21ff8ad618c162c
Binary files /dev/null and b/sam2/utils/__pycache__/__init__.cpython-311.pyc differ
diff --git a/sam2/utils/__pycache__/misc.cpython-311.pyc b/sam2/utils/__pycache__/misc.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..f652e958c32dd43a39432408ce66464b63937221
Binary files /dev/null and b/sam2/utils/__pycache__/misc.cpython-311.pyc differ
diff --git a/sam2/utils/__pycache__/transforms.cpython-311.pyc b/sam2/utils/__pycache__/transforms.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..69a2e1abaf103402e95d4cc74bef711622f8df2e
Binary files /dev/null and b/sam2/utils/__pycache__/transforms.cpython-311.pyc differ
diff --git a/sam2/utils/amg.py b/sam2/utils/amg.py
new file mode 100644
index 0000000000000000000000000000000000000000..986842960cf5deca00614b7b1cde1ab77dad7e6e
--- /dev/null
+++ b/sam2/utils/amg.py
@@ -0,0 +1,348 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import math
+from copy import deepcopy
+from itertools import product
+from typing import Any, Dict, Generator, ItemsView, List, Tuple
+
+import numpy as np
+import torch
+
+# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
+
+
+class MaskData:
+    """
+    A structure for storing masks and their related data in batched format.
+    Implements basic filtering and concatenation.
+    """
+
+    def __init__(self, **kwargs) -> None:
+        for v in kwargs.values():
+            assert isinstance(
+                v, (list, np.ndarray, torch.Tensor)
+            ), "MaskData only supports list, numpy arrays, and torch tensors."
+        self._stats = dict(**kwargs)
+
+    def __setitem__(self, key: str, item: Any) -> None:
+        assert isinstance(
+            item, (list, np.ndarray, torch.Tensor)
+        ), "MaskData only supports list, numpy arrays, and torch tensors."
+        self._stats[key] = item
+
+    def __delitem__(self, key: str) -> None:
+        del self._stats[key]
+
+    def __getitem__(self, key: str) -> Any:
+        return self._stats[key]
+
+    def items(self) -> ItemsView[str, Any]:
+        return self._stats.items()
+
+    def filter(self, keep: torch.Tensor) -> None:
+        for k, v in self._stats.items():
+            if v is None:
+                self._stats[k] = None
+            elif isinstance(v, torch.Tensor):
+                self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
+            elif isinstance(v, np.ndarray):
+                self._stats[k] = v[keep.detach().cpu().numpy()]
+            elif isinstance(v, list) and keep.dtype == torch.bool:
+                self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
+            elif isinstance(v, list):
+                self._stats[k] = [v[i] for i in keep]
+            else:
+                raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
+
+    def cat(self, new_stats: "MaskData") -> None:
+        for k, v in new_stats.items():
+            if k not in self._stats or self._stats[k] is None:
+                self._stats[k] = deepcopy(v)
+            elif isinstance(v, torch.Tensor):
+                self._stats[k] = torch.cat([self._stats[k], v], dim=0)
+            elif isinstance(v, np.ndarray):
+                self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
+            elif isinstance(v, list):
+                self._stats[k] = self._stats[k] + deepcopy(v)
+            else:
+                raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
+
+    def to_numpy(self) -> None:
+        for k, v in self._stats.items():
+            if isinstance(v, torch.Tensor):
+                self._stats[k] = v.float().detach().cpu().numpy()
+
+
+def is_box_near_crop_edge(
+    boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
+) -> torch.Tensor:
+    """Filter masks at the edge of a crop, but not at the edge of the original image."""
+    crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
+    orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
+    boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
+    near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
+    near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
+    near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
+    return torch.any(near_crop_edge, dim=1)
+
+
+def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
+    box_xywh = deepcopy(box_xyxy)
+    box_xywh[2] = box_xywh[2] - box_xywh[0]
+    box_xywh[3] = box_xywh[3] - box_xywh[1]
+    return box_xywh
+
+
+def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
+    assert len(args) > 0 and all(
+        len(a) == len(args[0]) for a in args
+    ), "Batched iteration must have inputs of all the same size."
+    n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
+    for b in range(n_batches):
+        yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
+
+
+def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
+    """
+    Encodes masks to an uncompressed RLE, in the format expected by
+    pycoco tools.
+    """
+    # Put in fortran order and flatten h,w
+    b, h, w = tensor.shape
+    tensor = tensor.permute(0, 2, 1).flatten(1)
+
+    # Compute change indices
+    diff = tensor[:, 1:] ^ tensor[:, :-1]
+    change_indices = diff.nonzero()
+
+    # Encode run length
+    out = []
+    for i in range(b):
+        cur_idxs = change_indices[change_indices[:, 0] == i, 1]
+        cur_idxs = torch.cat(
+            [
+                torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
+                cur_idxs + 1,
+                torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
+            ]
+        )
+        btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
+        counts = [] if tensor[i, 0] == 0 else [0]
+        counts.extend(btw_idxs.detach().cpu().tolist())
+        out.append({"size": [h, w], "counts": counts})
+    return out
+
+
+def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
+    """Compute a binary mask from an uncompressed RLE."""
+    h, w = rle["size"]
+    mask = np.empty(h * w, dtype=bool)
+    idx = 0
+    parity = False
+    for count in rle["counts"]:
+        mask[idx : idx + count] = parity
+        idx += count
+        parity ^= True
+    mask = mask.reshape(w, h)
+    return mask.transpose()  # Put in C order
+
+
+def area_from_rle(rle: Dict[str, Any]) -> int:
+    return sum(rle["counts"][1::2])
+
+
+def calculate_stability_score(
+    masks: torch.Tensor, mask_threshold: float, threshold_offset: float
+) -> torch.Tensor:
+    """
+    Computes the stability score for a batch of masks. The stability
+    score is the IoU between the binary masks obtained by thresholding
+    the predicted mask logits at high and low values.
+    """
+    # One mask is always contained inside the other.
+    # Save memory by preventing unnecessary cast to torch.int64
+    intersections = (
+        (masks > (mask_threshold + threshold_offset))
+        .sum(-1, dtype=torch.int16)
+        .sum(-1, dtype=torch.int32)
+    )
+    unions = (
+        (masks > (mask_threshold - threshold_offset))
+        .sum(-1, dtype=torch.int16)
+        .sum(-1, dtype=torch.int32)
+    )
+    return intersections / unions
+
+
+def build_point_grid(n_per_side: int) -> np.ndarray:
+    """Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
+    offset = 1 / (2 * n_per_side)
+    points_one_side = np.linspace(offset, 1 - offset, n_per_side)
+    points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
+    points_y = np.tile(points_one_side[:, None], (1, n_per_side))
+    points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
+    return points
+
+
+def build_all_layer_point_grids(
+    n_per_side: int, n_layers: int, scale_per_layer: int
+) -> List[np.ndarray]:
+    """Generates point grids for all crop layers."""
+    points_by_layer = []
+    for i in range(n_layers + 1):
+        n_points = int(n_per_side / (scale_per_layer**i))
+        points_by_layer.append(build_point_grid(n_points))
+    return points_by_layer
+
+
+def generate_crop_boxes(
+    im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
+) -> Tuple[List[List[int]], List[int]]:
+    """
+    Generates a list of crop boxes of different sizes. Each layer
+    has (2**i)**2 boxes for the ith layer.
+    """
+    crop_boxes, layer_idxs = [], []
+    im_h, im_w = im_size
+    short_side = min(im_h, im_w)
+
+    # Original image
+    crop_boxes.append([0, 0, im_w, im_h])
+    layer_idxs.append(0)
+
+    def crop_len(orig_len, n_crops, overlap):
+        return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
+
+    for i_layer in range(n_layers):
+        n_crops_per_side = 2 ** (i_layer + 1)
+        overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
+
+        crop_w = crop_len(im_w, n_crops_per_side, overlap)
+        crop_h = crop_len(im_h, n_crops_per_side, overlap)
+
+        crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
+        crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
+
+        # Crops in XYWH format
+        for x0, y0 in product(crop_box_x0, crop_box_y0):
+            box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
+            crop_boxes.append(box)
+            layer_idxs.append(i_layer + 1)
+
+    return crop_boxes, layer_idxs
+
+
+def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
+    x0, y0, _, _ = crop_box
+    offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
+    # Check if boxes has a channel dimension
+    if len(boxes.shape) == 3:
+        offset = offset.unsqueeze(1)
+    return boxes + offset
+
+
+def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
+    x0, y0, _, _ = crop_box
+    offset = torch.tensor([[x0, y0]], device=points.device)
+    # Check if points has a channel dimension
+    if len(points.shape) == 3:
+        offset = offset.unsqueeze(1)
+    return points + offset
+
+
+def uncrop_masks(
+    masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
+) -> torch.Tensor:
+    x0, y0, x1, y1 = crop_box
+    if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
+        return masks
+    # Coordinate transform masks
+    pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
+    pad = (x0, pad_x - x0, y0, pad_y - y0)
+    return torch.nn.functional.pad(masks, pad, value=0)
+
+
+def remove_small_regions(
+    mask: np.ndarray, area_thresh: float, mode: str
+) -> Tuple[np.ndarray, bool]:
+    """
+    Removes small disconnected regions and holes in a mask. Returns the
+    mask and an indicator of if the mask has been modified.
+    """
+    import cv2  # type: ignore
+
+    assert mode in ["holes", "islands"]
+    correct_holes = mode == "holes"
+    working_mask = (correct_holes ^ mask).astype(np.uint8)
+    n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
+    sizes = stats[:, -1][1:]  # Row 0 is background label
+    small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
+    if len(small_regions) == 0:
+        return mask, False
+    fill_labels = [0] + small_regions
+    if not correct_holes:
+        fill_labels = [i for i in range(n_labels) if i not in fill_labels]
+        # If every region is below threshold, keep largest
+        if len(fill_labels) == 0:
+            fill_labels = [int(np.argmax(sizes)) + 1]
+    mask = np.isin(regions, fill_labels)
+    return mask, True
+
+
+def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
+    from pycocotools import mask as mask_utils  # type: ignore
+
+    h, w = uncompressed_rle["size"]
+    rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
+    rle["counts"] = rle["counts"].decode("utf-8")  # Necessary to serialize with json
+    return rle
+
+
+def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
+    """
+    Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
+    an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
+    """
+    # torch.max below raises an error on empty inputs, just skip in this case
+    if torch.numel(masks) == 0:
+        return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
+
+    # Normalize shape to CxHxW
+    shape = masks.shape
+    h, w = shape[-2:]
+    if len(shape) > 2:
+        masks = masks.flatten(0, -3)
+    else:
+        masks = masks.unsqueeze(0)
+
+    # Get top and bottom edges
+    in_height, _ = torch.max(masks, dim=-1)
+    in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
+    bottom_edges, _ = torch.max(in_height_coords, dim=-1)
+    in_height_coords = in_height_coords + h * (~in_height)
+    top_edges, _ = torch.min(in_height_coords, dim=-1)
+
+    # Get left and right edges
+    in_width, _ = torch.max(masks, dim=-2)
+    in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
+    right_edges, _ = torch.max(in_width_coords, dim=-1)
+    in_width_coords = in_width_coords + w * (~in_width)
+    left_edges, _ = torch.min(in_width_coords, dim=-1)
+
+    # If the mask is empty the right edge will be to the left of the left edge.
+    # Replace these boxes with [0, 0, 0, 0]
+    empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
+    out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
+    out = out * (~empty_filter).unsqueeze(-1)
+
+    # Return to original shape
+    if len(shape) > 2:
+        out = out.reshape(*shape[:-2], 4)
+    else:
+        out = out[0]
+
+    return out
diff --git a/sam2/utils/misc.py b/sam2/utils/misc.py
new file mode 100644
index 0000000000000000000000000000000000000000..b65ee825732ff85137805be650edd4cbe8e6f6d4
--- /dev/null
+++ b/sam2/utils/misc.py
@@ -0,0 +1,349 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import os
+import warnings
+from threading import Thread
+
+import numpy as np
+import torch
+from PIL import Image
+from tqdm import tqdm
+
+
+def get_sdpa_settings():
+    if torch.cuda.is_available():
+        old_gpu = torch.cuda.get_device_properties(0).major < 7
+        # only use Flash Attention on Ampere (8.0) or newer GPUs
+        use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
+        if not use_flash_attn:
+            warnings.warn(
+                "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
+                category=UserWarning,
+                stacklevel=2,
+            )
+        # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
+        # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
+        pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
+        if pytorch_version < (2, 2):
+            warnings.warn(
+                f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
+                "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+        math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
+    else:
+        old_gpu = True
+        use_flash_attn = False
+        math_kernel_on = True
+
+    return old_gpu, use_flash_attn, math_kernel_on
+
+
+def get_connected_components(mask):
+    """
+    Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
+
+    Inputs:
+    - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
+            background.
+
+    Outputs:
+    - labels: A tensor of shape (N, 1, H, W) containing the connected component labels
+              for foreground pixels and 0 for background pixels.
+    - counts: A tensor of shape (N, 1, H, W) containing the area of the connected
+              components for foreground pixels and 0 for background pixels.
+    """
+    from sam2 import _C
+
+    return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
+
+
+def mask_to_box(masks: torch.Tensor):
+    """
+    compute bounding box given an input mask
+
+    Inputs:
+    - masks: [B, 1, H, W] masks, dtype=torch.Tensor
+
+    Returns:
+    - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
+    """
+    B, _, h, w = masks.shape
+    device = masks.device
+    xs = torch.arange(w, device=device, dtype=torch.int32)
+    ys = torch.arange(h, device=device, dtype=torch.int32)
+    grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
+    grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
+    grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
+    min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
+    max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
+    min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
+    max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
+    bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
+
+    return bbox_coords
+
+
+def _load_img_as_tensor(img_path, image_size):
+    img_pil = Image.open(img_path)
+    img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
+    if img_np.dtype == np.uint8:  # np.uint8 is expected for JPEG images
+        img_np = img_np / 255.0
+    else:
+        raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
+    img = torch.from_numpy(img_np).permute(2, 0, 1)
+    video_width, video_height = img_pil.size  # the original video size
+    return img, video_height, video_width
+
+
+class AsyncVideoFrameLoader:
+    """
+    A list of video frames to be load asynchronously without blocking session start.
+    """
+
+    def __init__(
+        self,
+        img_paths,
+        image_size,
+        offload_video_to_cpu,
+        img_mean,
+        img_std,
+        compute_device,
+    ):
+        self.img_paths = img_paths
+        self.image_size = image_size
+        self.offload_video_to_cpu = offload_video_to_cpu
+        self.img_mean = img_mean
+        self.img_std = img_std
+        # items in `self.images` will be loaded asynchronously
+        self.images = [None] * len(img_paths)
+        # catch and raise any exceptions in the async loading thread
+        self.exception = None
+        # video_height and video_width be filled when loading the first image
+        self.video_height = None
+        self.video_width = None
+        self.compute_device = compute_device
+
+        # load the first frame to fill video_height and video_width and also
+        # to cache it (since it's most likely where the user will click)
+        self.__getitem__(0)
+
+        # load the rest of frames asynchronously without blocking the session start
+        def _load_frames():
+            try:
+                for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
+                    self.__getitem__(n)
+            except Exception as e:
+                self.exception = e
+
+        self.thread = Thread(target=_load_frames, daemon=True)
+        self.thread.start()
+
+    def __getitem__(self, index):
+        if self.exception is not None:
+            raise RuntimeError("Failure in frame loading thread") from self.exception
+
+        img = self.images[index]
+        if img is not None:
+            return img
+
+        img, video_height, video_width = _load_img_as_tensor(
+            self.img_paths[index], self.image_size
+        )
+        self.video_height = video_height
+        self.video_width = video_width
+        # normalize by mean and std
+        img -= self.img_mean
+        img /= self.img_std
+        if not self.offload_video_to_cpu:
+            img = img.to(self.compute_device, non_blocking=True)
+        self.images[index] = img
+        return img
+
+    def __len__(self):
+        return len(self.images)
+
+
+def load_video_frames(
+    video_path,
+    image_size,
+    offload_video_to_cpu,
+    img_mean=(0.485, 0.456, 0.406),
+    img_std=(0.229, 0.224, 0.225),
+    async_loading_frames=False,
+    compute_device=torch.device("cuda"),
+):
+    """
+    Load the video frames from video_path. The frames are resized to image_size as in
+    the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
+    """
+    is_bytes = isinstance(video_path, bytes)
+    is_str = isinstance(video_path, str)
+    is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
+    if is_bytes or is_mp4_path:
+        return load_video_frames_from_video_file(
+            video_path=video_path,
+            image_size=image_size,
+            offload_video_to_cpu=offload_video_to_cpu,
+            img_mean=img_mean,
+            img_std=img_std,
+            compute_device=compute_device,
+        )
+    elif is_str and os.path.isdir(video_path):
+        return load_video_frames_from_jpg_images(
+            video_path=video_path,
+            image_size=image_size,
+            offload_video_to_cpu=offload_video_to_cpu,
+            img_mean=img_mean,
+            img_std=img_std,
+            async_loading_frames=async_loading_frames,
+            compute_device=compute_device,
+        )
+    else:
+        raise NotImplementedError(
+            "Only MP4 video and JPEG folder are supported at this moment"
+        )
+
+
+def load_video_frames_from_jpg_images(
+    video_path,
+    image_size,
+    offload_video_to_cpu,
+    img_mean=(0.485, 0.456, 0.406),
+    img_std=(0.229, 0.224, 0.225),
+    async_loading_frames=False,
+    compute_device=torch.device("cuda"),
+):
+    """
+    Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
+
+    The frames are resized to image_size x image_size and are loaded to GPU if
+    `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
+
+    You can load a frame asynchronously by setting `async_loading_frames` to `True`.
+    """
+    if isinstance(video_path, str) and os.path.isdir(video_path):
+        jpg_folder = video_path
+    else:
+        raise NotImplementedError(
+            "Only JPEG frames are supported at this moment. For video files, you may use "
+            "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
+            "```\n"
+            "ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
+            "```\n"
+            "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
+            "ffmpeg to start the JPEG file from 00000.jpg."
+        )
+
+    frame_names = [
+        p
+        for p in os.listdir(jpg_folder)
+        if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
+    ]
+    frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
+    num_frames = len(frame_names)
+    if num_frames == 0:
+        raise RuntimeError(f"no images found in {jpg_folder}")
+    img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
+    img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
+    img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
+
+    if async_loading_frames:
+        lazy_images = AsyncVideoFrameLoader(
+            img_paths,
+            image_size,
+            offload_video_to_cpu,
+            img_mean,
+            img_std,
+            compute_device,
+        )
+        return lazy_images, lazy_images.video_height, lazy_images.video_width
+
+    images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
+    for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
+        images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
+    if not offload_video_to_cpu:
+        images = images.to(compute_device)
+        img_mean = img_mean.to(compute_device)
+        img_std = img_std.to(compute_device)
+    # normalize by mean and std
+    images -= img_mean
+    images /= img_std
+    return images, video_height, video_width
+
+
+def load_video_frames_from_video_file(
+    video_path,
+    image_size,
+    offload_video_to_cpu,
+    img_mean=(0.485, 0.456, 0.406),
+    img_std=(0.229, 0.224, 0.225),
+    compute_device=torch.device("cuda"),
+):
+    """Load the video frames from a video file."""
+    import decord
+
+    img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
+    img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
+    # Get the original video height and width
+    decord.bridge.set_bridge("torch")
+    video_height, video_width, _ = decord.VideoReader(video_path).next().shape
+    # Iterate over all frames in the video
+    images = []
+    for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
+        images.append(frame.permute(2, 0, 1))
+
+    images = torch.stack(images, dim=0).float() / 255.0
+    if not offload_video_to_cpu:
+        images = images.to(compute_device)
+        img_mean = img_mean.to(compute_device)
+        img_std = img_std.to(compute_device)
+    # normalize by mean and std
+    images -= img_mean
+    images /= img_std
+    return images, video_height, video_width
+
+
+def fill_holes_in_mask_scores(mask, max_area):
+    """
+    A post processor to fill small holes in mask scores with area under `max_area`.
+    """
+    # Holes are those connected components in background with area <= self.max_area
+    # (background regions are those with mask scores <= 0)
+    assert max_area > 0, "max_area must be positive"
+
+    input_mask = mask
+    try:
+        labels, areas = get_connected_components(mask <= 0)
+        is_hole = (labels > 0) & (areas <= max_area)
+        # We fill holes with a small positive mask score (0.1) to change them to foreground.
+        mask = torch.where(is_hole, 0.1, mask)
+    except Exception as e:
+        # Skip the post-processing step on removing small holes if the CUDA kernel fails
+        warnings.warn(
+            f"{e}\n\nSkipping the post-processing step due to the error above. You can "
+            "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
+            "functionality may be limited (which doesn't affect the results in most cases; see "
+            "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
+            category=UserWarning,
+            stacklevel=2,
+        )
+        mask = input_mask
+
+    return mask
+
+
+def concat_points(old_point_inputs, new_points, new_labels):
+    """Add new points and labels to previous point inputs (add at the end)."""
+    if old_point_inputs is None:
+        points, labels = new_points, new_labels
+    else:
+        points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
+        labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
+
+    return {"point_coords": points, "point_labels": labels}
diff --git a/sam2/utils/transforms.py b/sam2/utils/transforms.py
new file mode 100644
index 0000000000000000000000000000000000000000..cc17bebfab104b659c5469e8434cf357ae7e24b6
--- /dev/null
+++ b/sam2/utils/transforms.py
@@ -0,0 +1,118 @@
+# Copyright (c) Meta Platforms, Inc. and affiliates.
+# All rights reserved.
+
+# This source code is licensed under the license found in the
+# LICENSE file in the root directory of this source tree.
+
+import warnings
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from torchvision.transforms import Normalize, Resize, ToTensor
+
+
+class SAM2Transforms(nn.Module):
+    def __init__(
+        self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
+    ):
+        """
+        Transforms for SAM2.
+        """
+        super().__init__()
+        self.resolution = resolution
+        self.mask_threshold = mask_threshold
+        self.max_hole_area = max_hole_area
+        self.max_sprinkle_area = max_sprinkle_area
+        self.mean = [0.485, 0.456, 0.406]
+        self.std = [0.229, 0.224, 0.225]
+        self.to_tensor = ToTensor()
+        self.transforms = torch.jit.script(
+            nn.Sequential(
+                Resize((self.resolution, self.resolution)),
+                Normalize(self.mean, self.std),
+            )
+        )
+
+    def __call__(self, x):
+        x = self.to_tensor(x)
+        return self.transforms(x)
+
+    def forward_batch(self, img_list):
+        img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
+        img_batch = torch.stack(img_batch, dim=0)
+        return img_batch
+
+    def transform_coords(
+        self, coords: torch.Tensor, normalize=False, orig_hw=None
+    ) -> torch.Tensor:
+        """
+        Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
+        If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
+
+        Returns
+            Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
+        """
+        if normalize:
+            assert orig_hw is not None
+            h, w = orig_hw
+            coords = coords.clone()
+            coords[..., 0] = coords[..., 0] / w
+            coords[..., 1] = coords[..., 1] / h
+
+        coords = coords * self.resolution  # unnormalize coords
+        return coords
+
+    def transform_boxes(
+        self, boxes: torch.Tensor, normalize=False, orig_hw=None
+    ) -> torch.Tensor:
+        """
+        Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
+        if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
+        """
+        boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
+        return boxes
+
+    def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
+        """
+        Perform PostProcessing on output masks.
+        """
+        from sam2.utils.misc import get_connected_components
+
+        masks = masks.float()
+        input_masks = masks
+        mask_flat = masks.flatten(0, 1).unsqueeze(1)  # flatten as 1-channel image
+        try:
+            if self.max_hole_area > 0:
+                # Holes are those connected components in background with area <= self.fill_hole_area
+                # (background regions are those with mask scores <= self.mask_threshold)
+                labels, areas = get_connected_components(
+                    mask_flat <= self.mask_threshold
+                )
+                is_hole = (labels > 0) & (areas <= self.max_hole_area)
+                is_hole = is_hole.reshape_as(masks)
+                # We fill holes with a small positive mask score (10.0) to change them to foreground.
+                masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
+
+            if self.max_sprinkle_area > 0:
+                labels, areas = get_connected_components(
+                    mask_flat > self.mask_threshold
+                )
+                is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
+                is_hole = is_hole.reshape_as(masks)
+                # We fill holes with negative mask score (-10.0) to change them to background.
+                masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
+        except Exception as e:
+            # Skip the post-processing step if the CUDA kernel fails
+            warnings.warn(
+                f"{e}\n\nSkipping the post-processing step due to the error above. You can "
+                "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
+                "functionality may be limited (which doesn't affect the results in most cases; see "
+                "https://github.com/facebookresearch/sam2/blob/main/INSTALL.md).",
+                category=UserWarning,
+                stacklevel=2,
+            )
+            masks = input_masks
+
+        masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
+        return masks
diff --git a/static/css/styles.css b/static/css/styles.css
new file mode 100644
index 0000000000000000000000000000000000000000..a1da6afee50b4f19cb9676362b219bd3a698f8d2
--- /dev/null
+++ b/static/css/styles.css
@@ -0,0 +1,292 @@
+/* Import Google Fonts */
+@import url('https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap');
+
+/* General Body Styling */
+body {
+    font-family: 'Inter', sans-serif;
+    background-color: #f4f6f8;
+    margin: 0;
+    padding: 0;
+    min-height: 100vh;
+}
+
+/* Container Styling */
+.container {
+    max-width: 1400px; /* Widened to better fit the boxes */
+    background: white;
+    padding: 30px;
+    border-radius: 16px;
+    box-shadow: 0 4px 20px rgba(0, 0, 0, 0.1);
+    margin: 20px auto;
+}
+
+/* Section Headers */
+h1, h2 {
+    font-size: 2rem;
+    font-weight: 700;
+    color: #333;
+    text-align: center;
+    margin-bottom: 20px;
+}
+
+/* Tool Sections */
+.tool-section {
+    background: #fff;
+    border: 1px solid #ddd;
+    border-radius: 16px;
+    padding: 20px;
+    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
+    margin-bottom: 30px;
+    width: 100%;
+    max-width: 1200px; /* Increased to align with SAM boxes */
+    margin: 20px auto;
+}
+
+/* Buttons Styling */
+.btn-group {
+    display: flex;
+    justify-content: center;
+    margin-bottom: 20px;
+    gap: 10px;
+}
+
+.btn-group button {
+    font-size: 16px;
+    padding: 10px 20px;
+    border-radius: 8px;
+    cursor: pointer;
+    transition: all 0.3s ease-in-out;
+    width: 50%; /* Equal button width */
+}
+
+.btn-group button.active {
+    background-color: #007bff;
+    color: white;
+    border: 1px solid #0056b3;
+}
+
+.btn-group button:hover {
+    background-color: #0056b3;
+    color: white;
+}
+
+/* Tool Layout */
+.tool-container {
+    display: flex;
+    flex-direction: column;
+    gap: 40px;
+    align-items: center;
+}
+
+/* Canvas Containers */
+.canvas-container {
+    width: 100%;
+    max-width: 600px; /* Adjusted for better alignment */
+    aspect-ratio: 1 / 1;
+    border: 2px solid #ddd;
+    border-radius: 16px;
+    background-color: #fff;
+    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
+    display: flex;
+    justify-content: center;
+    align-items: center;
+    padding: 10px;
+    margin: 0 auto;
+}
+
+/* File Upload Fields */
+input[type="file"] {
+    margin-top: 20px;
+    padding: 10px;
+    font-size: 16px;
+    border-radius: 8px;
+    border: 1px solid #ddd;
+    box-shadow: inset 0px 1px 3px rgba(0, 0, 0, 0.1);
+    width: 100%;
+    max-width: 600px;
+}
+
+input[type="file"]:focus {
+    border: 1px solid #007bff;
+    outline: none;
+}
+
+/* Processed Image Styling */
+#automaticProcessedImage {
+    border: 2px solid #ddd;
+    border-radius: 16px;
+    background-color: #fff;
+    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
+    width: 100%;
+    height: auto;
+    margin-top: 20px;
+}
+
+/* Clear Points Button */
+#clearPoints {
+    margin-top: 20px;
+    font-size: 14px;
+    padding: 10px 15px;
+    border-radius: 5px;
+    color: white;
+    background-color: #dc3545;
+    border: none;
+    cursor: pointer;
+}
+
+#clearPoints:hover {
+    background-color: #b52b37;
+}
+
+/* Table Styling */
+.table {
+    border: 1px solid #ddd;
+    border-radius: 10px;
+    overflow: hidden;
+    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
+    width: 100%;
+}
+
+.table th {
+    background-color: #007bff; /* Blue column headers */
+    color: white;
+    font-weight: bold;
+    text-align: center;
+    padding: 10px;
+}
+
+.table td {
+    padding: 10px;
+    vertical-align: middle;
+    background-color: #f9f9f9;
+    text-align: center;
+}
+
+.table-responsive {
+    border-radius: 10px;
+    overflow: hidden;
+}
+
+/* Buttons Styling */
+#clearTableButton, #exportTableButton {
+    font-size: 16px;
+    padding: 10px 20px;
+    border-radius: 8px;
+    color: white;
+    background-color: #007bff;
+    border: none;
+    transition: all 0.3s ease-in-out;
+}
+
+#clearTableButton:hover, #exportTableButton:hover {
+    background-color: #0056b3;
+    cursor: pointer;
+}
+
+/* Responsive Design */
+@media screen and (max-width: 768px) {
+    .tool-section {
+        flex-direction: column;
+        align-items: center;
+    }
+
+    .canvas-container {
+        margin-bottom: 20px;
+    }
+
+    .btn-group button {
+        width: 100%;
+    }
+
+    .table {
+        font-size: 14px;
+    }
+}
+
+/* Additional Adjustments */
+.tool-section img, canvas {
+    max-width: 100%;
+    height: auto;
+    border-radius: 8px;
+}
+
+#historyButton {
+    font-size: 16px;
+    padding: 10px 20px;
+    border-radius: 8px;
+    color: white;
+    background-color: #6c757d; /* Bootstrap secondary color */
+    border: none;
+}
+
+#historyButton:hover {
+    background-color: #5a6268;
+    cursor: pointer;
+}
+
+/* Modal Body Styling */
+.modal-body {
+    padding: 15px;
+    width: 100%;
+    max-width: 600px; /* Adjust width to accommodate delete buttons */
+    margin: auto;
+    display: flex;
+    flex-direction: column;
+    align-items: center;
+}
+/* History Modal List Styling */
+#historyList {
+    padding: 0;
+    margin: 0;
+    list-style: none; /* Remove default bullets */
+    width: 100%; /* Expand list width */
+}
+
+/* List Group Item Styling */
+#historyList .list-group-item {
+    display: flex; /* Flexbox for alignment */
+    justify-content: space-between; /* Space between filename and delete button */
+    align-items: center; /* Vertically align items */
+    padding: 10px 15px; /* Add consistent padding */
+    border: 1px solid #ddd; /* Optional: border for clarity */
+    border-radius: 8px; /* Rounded corners */
+    background-color: #fff; /* White background for contrast */
+    box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); /* Subtle shadow for depth */
+    margin-bottom: 5px; /* Space between list items */
+    width: 100%; /* Ensure full width inside modal */
+}
+
+/* Filename Styling */
+#historyList .filename {
+    flex-grow: 1; /* Allow filename to take up available space */
+    text-overflow: ellipsis; /* Truncate long names */
+    white-space: nowrap; /* Prevent wrapping */
+    overflow: hidden; /* Hide overflowing text */
+    padding-right: 15px; /* Space between filename and delete button */
+}
+
+/* Delete Button Styling */
+#historyList .btn-danger {
+    flex-shrink: 0; /* Prevent button from shrinking */
+    padding: 5px 15px;
+    font-size: 14px;
+    border-radius: 8px; /* Rounded corners */
+    background-color: #dc3545; /* Standard Bootstrap danger color */
+    border: none;
+    transition: all 0.3s ease-in-out;
+}
+
+#historyList .btn-danger:hover {
+    background-color: #b52b37; /* Slightly darker red on hover */
+    color: white;
+    cursor: pointer;
+}
+
+/* Modal Adjustments */
+.modal-dialog {
+    max-width: 700px; /* Wider modal dialog to fit the expanded list and delete buttons */
+}
+
+.modal-content {
+    padding: 10px;
+}
diff --git a/static/history/images/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg b/static/history/images/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ac452b8c15bf70a138cbc334e670fb75f2c4900e
Binary files /dev/null and b/static/history/images/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg differ
diff --git a/static/history/images/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg b/static/history/images/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4cb1ec47ff7e172bcd876582462f9667c0118c19
Binary files /dev/null and b/static/history/images/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg differ
diff --git a/static/history/images/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg b/static/history/images/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3612ea8bad3b881d64ba82a7bcb3734fd0d3c301
Binary files /dev/null and b/static/history/images/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg differ
diff --git a/static/history/images/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg b/static/history/images/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f7769c2afbed542791dc7aa6c99b8f731b993c3d
Binary files /dev/null and b/static/history/images/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg differ
diff --git a/static/history/images/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg b/static/history/images/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6a23e88255583db9dad0ae7d84c04aee4a17d7a1
Binary files /dev/null and b/static/history/images/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg differ
diff --git a/static/history/images/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg b/static/history/images/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..368daef342ad0515e373f0c051f72717bdeb2d47
Binary files /dev/null and b/static/history/images/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg differ
diff --git a/static/history/images/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg b/static/history/images/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1e24609b75ed127858eb6fb66eba9d2274a09917
Binary files /dev/null and b/static/history/images/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg differ
diff --git a/static/history/images/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg b/static/history/images/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..860d0363ad46861aea837591d26295477a608eac
Binary files /dev/null and b/static/history/images/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg differ
diff --git a/static/history/images/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg b/static/history/images/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5b357e7c557db3b68472b6f40accc04f469f33dd
Binary files /dev/null and b/static/history/images/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg differ
diff --git a/static/history/images/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg b/static/history/images/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9182db336422bdf0ac364af9fad89d9e0aa7ff4f
Binary files /dev/null and b/static/history/images/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg differ
diff --git a/static/history/masks/chip/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png b/static/history/masks/chip/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png
new file mode 100644
index 0000000000000000000000000000000000000000..cfe59a8e858cb63a75e133f959eabb1ebdc0c20b
Binary files /dev/null and b/static/history/masks/chip/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png differ
diff --git a/static/history/masks/chip/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png b/static/history/masks/chip/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png
new file mode 100644
index 0000000000000000000000000000000000000000..9d8126856e3b0a8cbdd32ab02489700065839c4d
Binary files /dev/null and b/static/history/masks/chip/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png differ
diff --git a/static/history/masks/chip/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png b/static/history/masks/chip/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png
new file mode 100644
index 0000000000000000000000000000000000000000..b54dd093ebc3753379df1d30325ee7232f1a653d
Binary files /dev/null and b/static/history/masks/chip/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png differ
diff --git a/static/history/masks/chip/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png b/static/history/masks/chip/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png
new file mode 100644
index 0000000000000000000000000000000000000000..e4dbc826edcda87f39dd1998176e2162c379058c
Binary files /dev/null and b/static/history/masks/chip/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png differ
diff --git a/static/history/masks/chip/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png b/static/history/masks/chip/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png
new file mode 100644
index 0000000000000000000000000000000000000000..b1159aa308dd01a7b4ceb1c15d3fcc27f622f193
Binary files /dev/null and b/static/history/masks/chip/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png differ
diff --git a/static/history/masks/chip/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png b/static/history/masks/chip/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png
new file mode 100644
index 0000000000000000000000000000000000000000..685eb010a7a3ed2820a583c6f79669735e8d2a33
Binary files /dev/null and b/static/history/masks/chip/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png differ
diff --git a/static/history/masks/chip/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png b/static/history/masks/chip/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png
new file mode 100644
index 0000000000000000000000000000000000000000..8e1c3e1a7e9af6d64b521e132eb24145e5b89bdb
Binary files /dev/null and b/static/history/masks/chip/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png differ
diff --git a/static/history/masks/chip/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png b/static/history/masks/chip/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png
new file mode 100644
index 0000000000000000000000000000000000000000..49af8a089a365164655cb69ee999698285b16b31
Binary files /dev/null and b/static/history/masks/chip/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png differ
diff --git a/static/history/masks/chip/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png b/static/history/masks/chip/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png
new file mode 100644
index 0000000000000000000000000000000000000000..a9ba5fccb3f7f3eb5b2ce8a556812566f7d1770e
Binary files /dev/null and b/static/history/masks/chip/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png differ
diff --git a/static/history/masks/chip/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png b/static/history/masks/chip/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png
new file mode 100644
index 0000000000000000000000000000000000000000..085353f59f871492391434d027b1f664604dcfc7
Binary files /dev/null and b/static/history/masks/chip/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png differ
diff --git a/static/history/masks/void/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png b/static/history/masks/void/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png
new file mode 100644
index 0000000000000000000000000000000000000000..e6fc92f551a7d60c65f2df142a541bec91870f5d
Binary files /dev/null and b/static/history/masks/void/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png differ
diff --git a/static/history/masks/void/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png b/static/history/masks/void/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png
new file mode 100644
index 0000000000000000000000000000000000000000..a2354e965cc811518a03465c31af0c198869fd95
Binary files /dev/null and b/static/history/masks/void/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png differ
diff --git a/static/history/masks/void/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png b/static/history/masks/void/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png
new file mode 100644
index 0000000000000000000000000000000000000000..94ec31dbc470a83ad06750cbfc1dadacdae9e923
Binary files /dev/null and b/static/history/masks/void/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png differ
diff --git a/static/history/masks/void/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png b/static/history/masks/void/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png
new file mode 100644
index 0000000000000000000000000000000000000000..b373067ac59737c435e4eada9171f4498416a89f
Binary files /dev/null and b/static/history/masks/void/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png differ
diff --git a/static/history/masks/void/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png b/static/history/masks/void/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png
new file mode 100644
index 0000000000000000000000000000000000000000..3ccdfc5a7e3612a37167a117828aa10b31bb2322
Binary files /dev/null and b/static/history/masks/void/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png differ
diff --git a/static/history/masks/void/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png b/static/history/masks/void/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png
new file mode 100644
index 0000000000000000000000000000000000000000..0151180865d7b664d7ffa51db606086a16f6c889
Binary files /dev/null and b/static/history/masks/void/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png differ
diff --git a/static/history/masks/void/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png b/static/history/masks/void/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png
new file mode 100644
index 0000000000000000000000000000000000000000..a1c195f11edd403f3dabac42760e9049808c51e7
Binary files /dev/null and b/static/history/masks/void/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png differ
diff --git a/static/history/masks/void/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png b/static/history/masks/void/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png
new file mode 100644
index 0000000000000000000000000000000000000000..ac8e0a95d726259518793040157782d8ce667656
Binary files /dev/null and b/static/history/masks/void/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png differ
diff --git a/static/history/masks/void/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png b/static/history/masks/void/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd9732adb958f28969d2d88c1fe8af3bec378f12
Binary files /dev/null and b/static/history/masks/void/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png differ
diff --git a/static/history/masks/void/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png b/static/history/masks/void/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png
new file mode 100644
index 0000000000000000000000000000000000000000..13afab24243cbfaf4c21271b50bc0d41c2b38b51
Binary files /dev/null and b/static/history/masks/void/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png differ
diff --git a/static/js/app.js b/static/js/app.js
new file mode 100644
index 0000000000000000000000000000000000000000..7197eb3451c1b7aecdaa5bc2bdc7e006963e2034
--- /dev/null
+++ b/static/js/app.js
@@ -0,0 +1,689 @@
+// Interactive Segmentation DOM elements
+const inputCanvas = document.getElementById('inputCanvas');
+const segmentedCanvas = document.getElementById('segmentedCanvas');
+const imageUpload = document.getElementById('imageUpload');
+const clearPointsButton = document.getElementById('clearPoints');
+const voidsButton = document.getElementById('voidsButton');
+const chipsButton = document.getElementById('chipsButton');
+const retrainModelButton = document.getElementById('retrainModelButton');
+const etaDisplay = document.getElementById('etaDisplay');
+
+// Automatic Segmentation DOM elements
+const automaticImageUpload = document.getElementById('automaticImageUpload');
+const automaticProcessedImage = document.getElementById('automaticProcessedImage');
+const resultsTableBody = document.getElementById('resultsTableBody');
+const clearTableButton = document.getElementById('clearTableButton');
+const exportTableButton = document.getElementById('exportTableButton');
+
+// Constants for consistent canvas and SAM model dimensions
+const CANVAS_SIZE = 512;
+inputCanvas.width = CANVAS_SIZE;
+inputCanvas.height = CANVAS_SIZE;
+segmentedCanvas.width = CANVAS_SIZE;
+segmentedCanvas.height = CANVAS_SIZE;
+
+// Interactive segmentation variables
+let points = { Voids: [], Chips: [] };
+let labels = { Voids: [], Chips: [] };
+let currentClass = 'Voids';
+let imageUrl = '';
+let originalImageWidth = 0;
+let originalImageHeight = 0;
+let trainingInProgress = false;
+
+// Disable right-click menu on canvas
+inputCanvas.addEventListener('contextmenu', (event) => event.preventDefault());
+
+// Switch between classes
+voidsButton.addEventListener('click', () => {
+    currentClass = 'Voids';
+    voidsButton.classList.add('active');
+    chipsButton.classList.remove('active');
+    clearAndRestorePoints();
+});
+
+chipsButton.addEventListener('click', () => {
+    currentClass = 'Chips';
+    chipsButton.classList.add('active');
+    voidsButton.classList.remove('active');
+    clearAndRestorePoints();
+});
+
+// Handle image upload for interactive tool
+imageUpload.addEventListener('change', async (event) => {
+    const file = event.target.files[0];
+    const formData = new FormData();
+    formData.append('file', file);
+
+    try {
+        const response = await fetch('/upload', { method: 'POST', body: formData });
+        const data = await response.json();
+        if (data.error) {
+            console.error('Error uploading image:', data.error);
+            return;
+        }
+
+        imageUrl = data.image_url;
+        console.log('Uploaded image URL:', imageUrl);
+
+        const img = new Image();
+        img.src = imageUrl;
+        img.onload = () => {
+            console.log('Image loaded:', img.width, img.height);
+            originalImageWidth = img.width;
+            originalImageHeight = img.height;
+            resizeAndDrawImage(inputCanvas, img);
+            resizeAndDrawImage(segmentedCanvas, img);
+        };
+        img.onerror = () => {
+            console.error('Failed to load image from URL:', imageUrl);
+        };
+    } catch (error) {
+        console.error('Failed to upload image:', error);
+    }
+});
+
+
+// Handle input canvas clicks
+inputCanvas.addEventListener('mousedown', async (event) => {
+    const rect = inputCanvas.getBoundingClientRect();
+    const x = (event.clientX - rect.left) * (originalImageWidth / CANVAS_SIZE);
+    const y = (event.clientY - rect.top) * (originalImageHeight / CANVAS_SIZE);
+
+    if (event.button === 2) {
+        points[currentClass].push([x, y]);
+        labels[currentClass].push(0); // Exclude point (red)
+    } else if (event.button === 0) {
+        points[currentClass].push([x, y]);
+        labels[currentClass].push(1); // Include point (green)
+    }
+
+    drawPoints();
+    await updateSegmentation();
+});
+
+// Clear points for current class
+clearPointsButton.addEventListener('click', () => {
+    points[currentClass] = [];
+    labels[currentClass] = [];
+    drawPoints();
+    resetSegmentation();
+});
+
+function resizeAndDrawImage(canvas, img) {
+    const ctx = canvas.getContext('2d');
+    ctx.clearRect(0, 0, canvas.width, canvas.height); // Clear the canvas
+
+    // Scale the image to fit within the canvas
+    const scale = Math.min(canvas.width / img.width, canvas.height / img.height);
+    const x = (canvas.width - img.width * scale) / 2;
+    const y = (canvas.height - img.height * scale) / 2;
+
+    ctx.drawImage(img, x, y, img.width * scale, img.height * scale);
+}
+
+
+// Draw points on canvases
+function drawPoints() {
+    [inputCanvas, segmentedCanvas].forEach((canvas) => {
+        const ctx = canvas.getContext('2d');
+        ctx.clearRect(0, 0, CANVAS_SIZE, CANVAS_SIZE);
+
+        const img = new Image();
+        img.src = imageUrl;
+        img.onload = () => {
+            resizeAndDrawImage(canvas, img);
+
+            points[currentClass].forEach(([x, y], i) => {
+                const scaledX = x * (CANVAS_SIZE / originalImageWidth);
+                const scaledY = y * (CANVAS_SIZE / originalImageHeight);
+                ctx.beginPath();
+                ctx.arc(scaledX, scaledY, 5, 0, 2 * Math.PI);
+                ctx.fillStyle = labels[currentClass][i] === 1 ? 'green' : 'red';
+                ctx.fill();
+            });
+        };
+        img.onerror = () => {
+            console.error('Error loading image for canvas:', img.src);
+        };
+    });
+}
+
+async function updateSegmentation() {
+    try {
+        const response = await fetch('/segment', {
+            method: 'POST',
+            headers: { 'Content-Type': 'application/json' },
+            body: JSON.stringify({ points: points[currentClass], labels: labels[currentClass], class: currentClass.toLowerCase() })
+        });
+
+        const data = await response.json();
+
+        if (data.error) {
+            console.error('Error during segmentation:', data.error);
+            alert(`Segmentation error: ${data.error}`);
+            return;
+        }
+
+        console.log('Segmentation result:', data);
+
+        const img = new Image();
+        img.src = `${data.segmented_url}?t=${new Date().getTime()}`; // Add timestamp to prevent caching
+        img.onload = () => {
+            console.log('Segmented image loaded successfully:', img.src);
+            resizeAndDrawImage(segmentedCanvas, img); // Render the segmented image
+        };
+        img.onerror = () => {
+            console.error('Failed to load segmented image:', img.src);
+            alert('Failed to load the segmented image.');
+        };
+    } catch (error) {
+        console.error('Error updating segmentation:', error);
+        alert('Failed to process segmentation.');
+    }
+}
+
+// Reset segmented canvas
+function resetSegmentation() {
+    const ctx = segmentedCanvas.getContext('2d');
+    ctx.clearRect(0, 0, CANVAS_SIZE, CANVAS_SIZE);
+    const img = new Image();
+    img.src = imageUrl;
+    img.onload = () => resizeAndDrawImage(segmentedCanvas, img);
+}
+
+// Handle automatic segmentation
+automaticImageUpload.addEventListener('change', async (event) => {
+    const file = event.target.files[0];
+    const formData = new FormData();
+    formData.append('file', file);
+
+    try {
+        const response = await fetch('/automatic_segment', { method: 'POST', body: formData });
+        const data = await response.json();
+        if (data.error) return console.error('Error during automatic segmentation:', data.error);
+
+        // Display the processed image
+        const processedImage = document.getElementById('automaticProcessedImage');
+        processedImage.src = `${data.segmented_url}?t=${new Date().getTime()}`;
+        processedImage.style.display = 'block';
+
+        // Optionally append the table data
+        appendRowToTable(data.table_data); 
+    } catch (error) {
+        console.error('Failed to process image automatically:', error);
+    }
+});
+
+function appendRowToTable(tableData) {
+    // Remove duplicates based on the image name and chip number
+    const existingRows = Array.from(resultsTableBody.querySelectorAll('tr'));
+    const existingIdentifiers = existingRows.map(row => {
+        const cells = row.querySelectorAll('td');
+        return `${cells[0]?.textContent}_${cells[1]?.textContent}`; // Combine Image Name and Chip #
+    });
+
+    tableData.chips.forEach((chip, index) => {
+        const uniqueId = `${tableData.image_name}_${chip.chip_number}`;
+        if (existingIdentifiers.includes(uniqueId)) return; // Skip if already present
+
+        const row = document.createElement('tr');
+
+        // Image Name (unchanged for each chip)
+        const imageNameCell = document.createElement('td');
+        imageNameCell.textContent = tableData.image_name;
+        row.appendChild(imageNameCell);
+
+        // Chip # (1, 2, etc.)
+        const chipNumberCell = document.createElement('td');
+        chipNumberCell.textContent = chip.chip_number;
+        row.appendChild(chipNumberCell);
+
+        // Chip Area
+        const chipAreaCell = document.createElement('td');
+        chipAreaCell.textContent = chip.chip_area.toFixed(2);
+        row.appendChild(chipAreaCell);
+
+        // Void % (Total void area / Chip area * 100)
+        const voidPercentageCell = document.createElement('td');
+        voidPercentageCell.textContent = chip.void_percentage.toFixed(2);
+        row.appendChild(voidPercentageCell);
+
+        // Max Void % (Largest void area / Chip area * 100)
+        const maxVoidPercentageCell = document.createElement('td');
+        maxVoidPercentageCell.textContent = chip.max_void_percentage.toFixed(2);
+        row.appendChild(maxVoidPercentageCell);
+
+        resultsTableBody.appendChild(row);
+    });
+}
+
+// Handle automatic segmentation
+automaticImageUpload.addEventListener('change', async (event) => {
+    const file = event.target.files[0];
+    const formData = new FormData();
+    formData.append('file', file);
+
+    try {
+        const response = await fetch('/automatic_segment', { method: 'POST', body: formData });
+        const data = await response.json();
+        if (data.error) return console.error('Error during automatic segmentation:', data.error);
+
+        automaticProcessedImage.src = `${data.segmented_url}?t=${new Date().getTime()}`;
+        automaticProcessedImage.style.display = 'block';
+        appendRowToTable(data.table_data); // Append new data to the table
+    } catch (error) {
+        console.error('Failed to process image automatically:', error);
+    }
+});
+
+// Clear table
+clearTableButton.addEventListener('click', () => {
+    resultsTableBody.innerHTML = '';
+});
+
+// Export table to CSV
+exportTableButton.addEventListener('click', () => {
+    const rows = Array.from(resultsTableBody.querySelectorAll('tr'));
+    const csvContent = [
+        ['Image Name', 'Chip #', 'Chip Area', 'Void %', 'Max Void %'],
+        ...rows.map(row =>
+            Array.from(row.children).map(cell => cell.textContent)
+        ),
+    ]
+        .map(row => row.join(','))
+        .join('\n');
+
+    const blob = new Blob([csvContent], { type: 'text/csv' });
+    const url = URL.createObjectURL(blob);
+    const link = document.createElement('a');
+    link.href = url;
+    link.download = 'segmentation_results.csv';
+    link.click();
+    URL.revokeObjectURL(url);
+});
+saveBothButton.addEventListener('click', async () => {
+    const imageName = imageUrl.split('/').pop(); // Extract the image name from the URL
+    if (!imageName) {
+        alert("No image to save.");
+        return;
+    }
+
+    const confirmSave = confirm("Are you sure you want to save both voids and chips segmentations?");
+    if (!confirmSave) return;
+
+    try {
+        const response = await fetch('/save_both', {
+            method: 'POST',
+            headers: { 'Content-Type': 'application/json' },
+            body: JSON.stringify({ image_name: imageName })
+        });
+        const result = await response.json();
+        if (response.ok) {
+            alert(result.message);
+        } else {
+            alert("Failed to save segmentations.");
+        }
+    } catch (error) {
+        console.error("Error saving segmentations:", error);
+        alert("Failed to save segmentations.");
+    }
+});
+// Update the "historyButton" click listener to populate the list correctly
+document.getElementById('historyButton').addEventListener('click', async () => {
+    try {
+        const response = await fetch('/get_history'); // Fetch the saved history
+        const result = await response.json();
+
+        if (response.ok) {
+            const historyList = document.getElementById('historyList');
+            historyList.innerHTML = ''; // Clear the list
+
+            if (result.images.length === 0) {
+                historyList.innerHTML = '<li class="list-group-item">No images found in history.</li>';
+                return;
+            }
+
+            result.images.forEach(image => {
+                const listItem = document.createElement('li');
+                listItem.className = 'list-group-item';
+
+                const imageName = document.createElement('span');
+                imageName.textContent = image;
+
+                const deleteButton = document.createElement('button');
+                deleteButton.className = 'btn btn-danger btn-sm';
+                deleteButton.textContent = 'Delete';
+                deleteButton.addEventListener('click', async () => {
+                    if (confirm(`Are you sure you want to delete ${image}?`)) {
+                        await deleteHistoryItem(image, listItem);
+                    }
+                });
+
+                listItem.appendChild(imageName);
+                listItem.appendChild(deleteButton);
+                historyList.appendChild(listItem);
+            });
+
+            new bootstrap.Modal(document.getElementById('historyModal')).show();
+        } else {
+            alert("Failed to fetch history.");
+        }
+    } catch (error) {
+        console.error("Error fetching history:", error);
+        alert("Failed to fetch history.");
+    }
+});
+
+// Function to delete history item
+async function deleteHistoryItem(imageName, listItem) {
+    try {
+        const response = await fetch('/delete_history_item', {
+            method: 'POST',
+            headers: { 'Content-Type': 'application/json' },
+            body: JSON.stringify({ image_name: imageName })
+        });
+        const result = await response.json();
+
+        if (response.ok) {
+            alert(result.message);
+            listItem.remove(); // Remove the item from the list
+        } else {
+            alert("Failed to delete image.");
+        }
+    } catch (error) {
+        console.error("Error deleting image:", error);
+        alert("Failed to delete image.");
+    }
+}
+
+historyButton.addEventListener('click', async () => {
+    try {
+        const response = await fetch('/get_history');
+        const result = await response.json();
+
+        if (response.ok) {
+            const historyList = document.getElementById('historyList');
+            historyList.innerHTML = ''; // Clear the list
+
+            if (result.images.length === 0) {
+                historyList.innerHTML = '<li class="list-group-item">No images found in history.</li>';
+                return;
+            }
+
+            result.images.forEach(image => {
+                const listItem = document.createElement('li');
+                listItem.className = 'list-group-item d-flex justify-content-between align-items-center';
+                listItem.textContent = image;
+
+                const deleteButton = document.createElement('button');
+                deleteButton.className = 'btn btn-danger btn-sm';
+                deleteButton.textContent = 'Delete';
+                deleteButton.addEventListener('click', async () => {
+                    if (confirm(`Are you sure you want to delete ${image}?`)) {
+                        await deleteHistoryItem(image, listItem);
+                    }
+                });
+
+                listItem.appendChild(deleteButton);
+                historyList.appendChild(listItem);
+            });
+
+            new bootstrap.Modal(document.getElementById('historyModal')).show();
+        } else {
+            alert("Failed to fetch history.");
+        }
+    } catch (error) {
+        console.error("Error fetching history:", error);
+        alert("Failed to fetch history.");
+    }
+});
+
+// Function to delete history item
+async function deleteHistoryItem(imageName, listItem) {
+    try {
+        const response = await fetch('/delete_history_item', {
+            method: 'POST',
+            headers: { 'Content-Type': 'application/json' },
+            body: JSON.stringify({ image_name: imageName })
+        });
+        const result = await response.json();
+
+        if (response.ok) {
+            alert(result.message);
+            listItem.remove(); // Remove the item from the list
+        } else {
+            alert("Failed to delete image.");
+        }
+    } catch (error) {
+        console.error("Error deleting image:", error);
+        alert("Failed to delete image.");
+    }
+}
+
+// Handle Retrain Model button click
+retrainModelButton.addEventListener('click', async () => {
+    if (!trainingInProgress) {
+        const confirmRetrain = confirm("Are you sure you want to retrain the model?");
+        if (!confirmRetrain) return;
+
+        try {
+            const response = await fetch('/retrain_model', { method: 'POST' });
+            const result = await response.json();
+
+            if (response.ok) {
+                // Update button to "Cancel Training"
+                trainingInProgress = true;
+                retrainModelButton.textContent = "Cancel Training";
+                retrainModelButton.classList.replace("btn-primary", "btn-danger");
+                startTrainingMonitor(); // Start monitoring the training status
+            } else {
+                alert(result.error || "Failed to start retraining.");
+            }
+        } catch (error) {
+            console.error("Error starting training:", error);
+            alert("An error occurred while starting the training process.");
+        }
+    } else {
+        // Handle cancel training
+        const confirmCancel = confirm("Are you sure you want to cancel the training?");
+        if (!confirmCancel) return;
+
+        try {
+            const response = await fetch('/cancel_training', { method: 'POST' });
+            const result = await response.json();
+
+            if (response.ok) {
+                // Reset button to "Retrain Model"
+                trainingInProgress = false;
+                retrainModelButton.textContent = "Retrain Model";
+                retrainModelButton.classList.replace("btn-danger", "btn-primary");
+                alert(result.message || "Training canceled successfully.");
+            } else {
+                alert(result.error || "Failed to cancel training.");
+            }
+        } catch (error) {
+            console.error("Error canceling training:", error);
+            alert("An error occurred while canceling the training process.");
+        }
+    }
+});
+
+
+function startTrainingMonitor() {
+    const monitorInterval = setInterval(async () => {
+        try {
+            const response = await fetch('/training_status');
+            const result = await response.json();
+
+            const retrainButton = document.getElementById('retrainModelButton');
+            const cancelButton = document.getElementById('cancelTrainingButton');
+            const etaDisplay = document.getElementById('etaDisplay');
+
+            if (result.status === 'running') {
+                // Show training progress
+                retrainButton.style.display = 'none';
+                cancelButton.style.display = 'inline-block';
+                etaDisplay.textContent = `Estimated Time Left: ${result.eta || "Calculating..."}`;
+            } else if (result.status === 'idle' || result.status === 'cancelled') {
+                // Revert button to "Retrain Model" (blue)
+                cancelButton.style.display = 'none';
+                retrainButton.style.display = 'inline-block';
+                retrainButton.textContent = 'Retrain Model';
+                retrainButton.classList.replace('btn-danger', 'btn-primary');
+                etaDisplay.textContent = '';
+
+                // Stop monitoring if training is idle
+                if (result.status === 'idle') {
+                    clearInterval(monitorInterval);
+                }
+            }
+        } catch (error) {
+            console.error("Error fetching training status:", error);
+        }
+    }, 5000); // Poll every 5 seconds
+}
+
+function resetTrainingUI() {
+    trainingInProgress = false;
+    retrainModelButton.textContent = "Retrain Model";
+    retrainModelButton.classList.replace("btn-danger", "btn-primary");
+    etaDisplay.textContent = "";
+}
+
+clearHistoryButton.addEventListener('click', async () => {
+    const confirmClear = confirm("Are you sure you want to clear the history? This will delete all images and masks.");
+    if (!confirmClear) return;
+
+    try {
+        const response = await fetch('/clear_history', { method: 'POST' });
+        const result = await response.json();
+        if (response.ok) {
+            alert(result.message);
+            // Optionally update UI to reflect the cleared history
+            const historyList = document.getElementById('historyList');
+            if (historyList) historyList.innerHTML = '<li class="list-group-item">No images found in history.</li>';
+        } else {
+            alert("Failed to clear history.");
+        }
+    } catch (error) {
+        console.error("Error clearing history:", error);
+        alert("Failed to clear history.");
+    }
+});
+
+// Toggle training progress display
+function showTrainingProgress(message = "Initializing...", timeLeft = "Calculating...") {
+    document.getElementById("trainingProgress").style.display = "block";
+    document.getElementById("progressMessage").textContent = message;
+    document.getElementById("estimatedTimeLeft").textContent = `Estimated Time Left: ${timeLeft}`;
+}
+
+function hideTrainingProgress() {
+    document.getElementById("trainingProgress").style.display = "none";
+}
+
+// Toggle Cancel Training Button
+function showCancelTrainingButton() {
+    document.getElementById("cancelTrainingButton").style.display = "inline-block";
+    document.getElementById("retrainModelButton").style.display = "none";
+}
+
+function hideCancelTrainingButton() {
+    document.getElementById("cancelTrainingButton").style.display = "none";
+    document.getElementById("retrainModelButton").style.display = "inline-block";
+}
+
+// Add event listener to Cancel Training button
+document.getElementById("cancelTrainingButton").addEventListener("click", async () => {
+    const confirmCancel = confirm("Are you sure you want to cancel training?");
+    if (!confirmCancel) return;
+
+    try {
+        const response = await fetch("/cancel_training", { method: "POST" });
+        const result = await response.json();
+
+        if (result.message) {
+            alert(result.message);
+            hideTrainingProgress();
+            hideCancelTrainingButton();
+        }
+    } catch (error) {
+        console.error("Error canceling training:", error);
+        alert("Failed to cancel training.");
+    }
+});
+// Handle training status updates
+socket.on('training_status', (data) => {
+    const trainingButton = document.getElementById('retrainModelButton');
+    const cancelButton = document.getElementById('cancelTrainingButton');
+
+    if (data.status === 'completed') {
+        // Update UI: change "Cancel Training" to "Retrain Model"
+        trainingButton.style.display = 'inline-block';
+        cancelButton.style.display = 'none';
+
+        // Show a popup or notification for training completion
+        alert(data.message || "Training completed successfully!");
+    } else if (data.status === 'failed') {
+        // Update UI: change "Cancel Training" to "Retrain Model"
+        trainingButton.style.display = 'inline-block';
+        cancelButton.style.display = 'none';
+
+        // Show a popup or notification for training failure
+        alert(data.message || "Training failed. Please try again.");
+    }
+});
+
+socket.on('button_update', (data) => {
+    const retrainButton = document.getElementById('retrainModelButton');
+    const cancelButton = document.getElementById('cancelTrainingButton');
+
+    if (data.action === 'retrain') {
+        // Update to "Retrain Model" button
+        retrainButton.style.display = 'inline-block';
+        retrainButton.textContent = 'Retrain Model';
+        retrainButton.classList.replace('btn-danger', 'btn-primary');
+        cancelButton.style.display = 'none';
+    }
+});
+
+function updateButtonToRetrainModel() {
+    const button = document.getElementById('retrainModelButton');
+    button.innerText = "Retrain Model";
+    button.classList.replace("btn-danger", "btn-primary");
+    button.disabled = false;
+}
+
+
+socket.on('training_status', (data) => {
+    const retrainButton = document.getElementById('retrainModelButton');
+    const cancelButton = document.getElementById('cancelTrainingButton');
+
+    if (data.status === 'completed') {
+        retrainButton.style.display = 'inline-block';  // Show retrain button
+        retrainButton.textContent = "Retrain Model";
+        retrainButton.classList.replace("btn-danger", "btn-primary");
+        cancelButton.style.display = 'none';  // Hide cancel button
+
+        // Notify user
+        alert(data.message);
+    } else if (data.status === 'cancelled') {
+        retrainButton.style.display = 'inline-block';
+        retrainButton.textContent = "Retrain Model";
+        retrainButton.classList.replace("btn-danger", "btn-primary");
+        cancelButton.style.display = 'none';
+
+        // Notify user
+        alert(data.message);
+    }
+});
+
+// Ensure the modal backdrop is properly removed when the modal is closed
+document.getElementById('historyModal').addEventListener('hidden.bs.modal', function () {
+    document.body.classList.remove('modal-open');
+    const backdrop = document.querySelector('.modal-backdrop');
+    if (backdrop) {
+        backdrop.remove();
+    }
+});
diff --git a/static/uploads/input/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5.jpg b/static/uploads/input/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..d8c85c5cc11e9c183748a7d35e3c36ecb73d39ce
Binary files /dev/null and b/static/uploads/input/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5.jpg differ
diff --git a/static/uploads/input/05_jpg.rf.46241369ebb0749c40882400f82eb224.jpg b/static/uploads/input/05_jpg.rf.46241369ebb0749c40882400f82eb224.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3579081555eed5deffe74a0c437f943bdc15c6d6
Binary files /dev/null and b/static/uploads/input/05_jpg.rf.46241369ebb0749c40882400f82eb224.jpg differ
diff --git a/static/uploads/input/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98.jpg b/static/uploads/input/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..8c3fee5d55e85fbac7e5e21cda3751efcd5ca171
Binary files /dev/null and b/static/uploads/input/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98.jpg differ
diff --git a/static/uploads/input/10_JPG.rf.6745a7b3ea828239398b85182acba199.jpg b/static/uploads/input/10_JPG.rf.6745a7b3ea828239398b85182acba199.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..38978a38b1cb3774a934411b3f30271b18f56830
Binary files /dev/null and b/static/uploads/input/10_JPG.rf.6745a7b3ea828239398b85182acba199.jpg differ
diff --git a/static/uploads/input/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg b/static/uploads/input/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ac452b8c15bf70a138cbc334e670fb75f2c4900e
Binary files /dev/null and b/static/uploads/input/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg differ
diff --git a/static/uploads/input/12_jpg.rf.357643b374df92f81f9dee7c701b2315.jpg b/static/uploads/input/12_jpg.rf.357643b374df92f81f9dee7c701b2315.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..076496fd0fc67d90ad57e8d1489b4b74325d6a95
Binary files /dev/null and b/static/uploads/input/12_jpg.rf.357643b374df92f81f9dee7c701b2315.jpg differ
diff --git a/static/uploads/input/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c.jpg b/static/uploads/input/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5c9d8aab04b28cbbede78a5acf683b613aa14dd9
Binary files /dev/null and b/static/uploads/input/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c.jpg differ
diff --git a/static/uploads/input/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg b/static/uploads/input/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4cb1ec47ff7e172bcd876582462f9667c0118c19
Binary files /dev/null and b/static/uploads/input/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg differ
diff --git a/static/uploads/input/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg b/static/uploads/input/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3612ea8bad3b881d64ba82a7bcb3734fd0d3c301
Binary files /dev/null and b/static/uploads/input/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg differ
diff --git a/static/uploads/input/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg b/static/uploads/input/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f7769c2afbed542791dc7aa6c99b8f731b993c3d
Binary files /dev/null and b/static/uploads/input/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg differ
diff --git a/static/uploads/input/18_jpg.rf.4d241aab78af17171d83f3a50f1cf1aa.jpg b/static/uploads/input/18_jpg.rf.4d241aab78af17171d83f3a50f1cf1aa.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b11c87c8db424bf376c804444f39271f52c3b71f
Binary files /dev/null and b/static/uploads/input/18_jpg.rf.4d241aab78af17171d83f3a50f1cf1aa.jpg differ
diff --git a/static/uploads/input/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg b/static/uploads/input/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6a23e88255583db9dad0ae7d84c04aee4a17d7a1
Binary files /dev/null and b/static/uploads/input/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg differ
diff --git a/static/uploads/input/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg b/static/uploads/input/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..368daef342ad0515e373f0c051f72717bdeb2d47
Binary files /dev/null and b/static/uploads/input/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg differ
diff --git a/static/uploads/input/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg b/static/uploads/input/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1e24609b75ed127858eb6fb66eba9d2274a09917
Binary files /dev/null and b/static/uploads/input/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg differ
diff --git a/static/uploads/input/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg b/static/uploads/input/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..860d0363ad46861aea837591d26295477a608eac
Binary files /dev/null and b/static/uploads/input/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg differ
diff --git a/static/uploads/input/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg b/static/uploads/input/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5b357e7c557db3b68472b6f40accc04f469f33dd
Binary files /dev/null and b/static/uploads/input/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg differ
diff --git a/static/uploads/input/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg b/static/uploads/input/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9182db336422bdf0ac364af9fad89d9e0aa7ff4f
Binary files /dev/null and b/static/uploads/input/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg differ
diff --git a/static/uploads/input/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058.jpg b/static/uploads/input/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9472eeee73b114d8aca4191a6d71caa94b3fb499
Binary files /dev/null and b/static/uploads/input/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058.jpg differ
diff --git a/static/uploads/mask/chips/05_jpg.rf.46241369ebb0749c40882400f82eb224.png b/static/uploads/mask/chips/05_jpg.rf.46241369ebb0749c40882400f82eb224.png
new file mode 100644
index 0000000000000000000000000000000000000000..a942f9262cdec73c5cdfdf8056be9bf00045c8e3
Binary files /dev/null and b/static/uploads/mask/chips/05_jpg.rf.46241369ebb0749c40882400f82eb224.png differ
diff --git a/static/uploads/mask/chips/10_JPG.rf.6745a7b3ea828239398b85182acba199.png b/static/uploads/mask/chips/10_JPG.rf.6745a7b3ea828239398b85182acba199.png
new file mode 100644
index 0000000000000000000000000000000000000000..3d210ff182291a1a3cc88cfb3340a774a685b6fb
Binary files /dev/null and b/static/uploads/mask/chips/10_JPG.rf.6745a7b3ea828239398b85182acba199.png differ
diff --git a/static/uploads/mask/chips/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png b/static/uploads/mask/chips/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png
new file mode 100644
index 0000000000000000000000000000000000000000..cfe59a8e858cb63a75e133f959eabb1ebdc0c20b
Binary files /dev/null and b/static/uploads/mask/chips/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png differ
diff --git a/static/uploads/mask/chips/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png b/static/uploads/mask/chips/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png
new file mode 100644
index 0000000000000000000000000000000000000000..9d8126856e3b0a8cbdd32ab02489700065839c4d
Binary files /dev/null and b/static/uploads/mask/chips/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png differ
diff --git a/static/uploads/mask/chips/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png b/static/uploads/mask/chips/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png
new file mode 100644
index 0000000000000000000000000000000000000000..b54dd093ebc3753379df1d30325ee7232f1a653d
Binary files /dev/null and b/static/uploads/mask/chips/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png differ
diff --git a/static/uploads/mask/chips/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png b/static/uploads/mask/chips/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png
new file mode 100644
index 0000000000000000000000000000000000000000..e4dbc826edcda87f39dd1998176e2162c379058c
Binary files /dev/null and b/static/uploads/mask/chips/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png differ
diff --git a/static/uploads/mask/chips/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png b/static/uploads/mask/chips/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png
new file mode 100644
index 0000000000000000000000000000000000000000..b1159aa308dd01a7b4ceb1c15d3fcc27f622f193
Binary files /dev/null and b/static/uploads/mask/chips/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png differ
diff --git a/static/uploads/mask/chips/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png b/static/uploads/mask/chips/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png
new file mode 100644
index 0000000000000000000000000000000000000000..685eb010a7a3ed2820a583c6f79669735e8d2a33
Binary files /dev/null and b/static/uploads/mask/chips/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png differ
diff --git a/static/uploads/mask/chips/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png b/static/uploads/mask/chips/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png
new file mode 100644
index 0000000000000000000000000000000000000000..8e1c3e1a7e9af6d64b521e132eb24145e5b89bdb
Binary files /dev/null and b/static/uploads/mask/chips/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png differ
diff --git a/static/uploads/mask/chips/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png b/static/uploads/mask/chips/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png
new file mode 100644
index 0000000000000000000000000000000000000000..49af8a089a365164655cb69ee999698285b16b31
Binary files /dev/null and b/static/uploads/mask/chips/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png differ
diff --git a/static/uploads/mask/chips/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png b/static/uploads/mask/chips/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png
new file mode 100644
index 0000000000000000000000000000000000000000..a9ba5fccb3f7f3eb5b2ce8a556812566f7d1770e
Binary files /dev/null and b/static/uploads/mask/chips/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png differ
diff --git a/static/uploads/mask/chips/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png b/static/uploads/mask/chips/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png
new file mode 100644
index 0000000000000000000000000000000000000000..085353f59f871492391434d027b1f664604dcfc7
Binary files /dev/null and b/static/uploads/mask/chips/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png differ
diff --git a/static/uploads/mask/chips/raw_mask.png b/static/uploads/mask/chips/raw_mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..87663ac428d4cf9c4c0b4b682e93b2817c9fd8c9
Binary files /dev/null and b/static/uploads/mask/chips/raw_mask.png differ
diff --git a/static/uploads/mask/voids/05_jpg.rf.46241369ebb0749c40882400f82eb224.png b/static/uploads/mask/voids/05_jpg.rf.46241369ebb0749c40882400f82eb224.png
new file mode 100644
index 0000000000000000000000000000000000000000..967594c43334b0f6d6d8cf184108f29e940d6a51
Binary files /dev/null and b/static/uploads/mask/voids/05_jpg.rf.46241369ebb0749c40882400f82eb224.png differ
diff --git a/static/uploads/mask/voids/10_JPG.rf.6745a7b3ea828239398b85182acba199.png b/static/uploads/mask/voids/10_JPG.rf.6745a7b3ea828239398b85182acba199.png
new file mode 100644
index 0000000000000000000000000000000000000000..535574a5d920250a287286dc4cdbd2198b503bcb
Binary files /dev/null and b/static/uploads/mask/voids/10_JPG.rf.6745a7b3ea828239398b85182acba199.png differ
diff --git a/static/uploads/mask/voids/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png b/static/uploads/mask/voids/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png
new file mode 100644
index 0000000000000000000000000000000000000000..e6fc92f551a7d60c65f2df142a541bec91870f5d
Binary files /dev/null and b/static/uploads/mask/voids/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png differ
diff --git a/static/uploads/mask/voids/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png b/static/uploads/mask/voids/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png
new file mode 100644
index 0000000000000000000000000000000000000000..a2354e965cc811518a03465c31af0c198869fd95
Binary files /dev/null and b/static/uploads/mask/voids/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png differ
diff --git a/static/uploads/mask/voids/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png b/static/uploads/mask/voids/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png
new file mode 100644
index 0000000000000000000000000000000000000000..94ec31dbc470a83ad06750cbfc1dadacdae9e923
Binary files /dev/null and b/static/uploads/mask/voids/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png differ
diff --git a/static/uploads/mask/voids/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png b/static/uploads/mask/voids/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png
new file mode 100644
index 0000000000000000000000000000000000000000..b373067ac59737c435e4eada9171f4498416a89f
Binary files /dev/null and b/static/uploads/mask/voids/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png differ
diff --git a/static/uploads/mask/voids/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png b/static/uploads/mask/voids/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png
new file mode 100644
index 0000000000000000000000000000000000000000..3ccdfc5a7e3612a37167a117828aa10b31bb2322
Binary files /dev/null and b/static/uploads/mask/voids/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png differ
diff --git a/static/uploads/mask/voids/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png b/static/uploads/mask/voids/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png
new file mode 100644
index 0000000000000000000000000000000000000000..0151180865d7b664d7ffa51db606086a16f6c889
Binary files /dev/null and b/static/uploads/mask/voids/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png differ
diff --git a/static/uploads/mask/voids/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png b/static/uploads/mask/voids/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png
new file mode 100644
index 0000000000000000000000000000000000000000..a1c195f11edd403f3dabac42760e9049808c51e7
Binary files /dev/null and b/static/uploads/mask/voids/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png differ
diff --git a/static/uploads/mask/voids/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png b/static/uploads/mask/voids/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png
new file mode 100644
index 0000000000000000000000000000000000000000..ac8e0a95d726259518793040157782d8ce667656
Binary files /dev/null and b/static/uploads/mask/voids/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png differ
diff --git a/static/uploads/mask/voids/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png b/static/uploads/mask/voids/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd9732adb958f28969d2d88c1fe8af3bec378f12
Binary files /dev/null and b/static/uploads/mask/voids/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png differ
diff --git a/static/uploads/mask/voids/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png b/static/uploads/mask/voids/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png
new file mode 100644
index 0000000000000000000000000000000000000000..13afab24243cbfaf4c21271b50bc0d41c2b38b51
Binary files /dev/null and b/static/uploads/mask/voids/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png differ
diff --git a/static/uploads/mask/voids/raw_mask.png b/static/uploads/mask/voids/raw_mask.png
new file mode 100644
index 0000000000000000000000000000000000000000..5b197214b627eb2d8ab6de48a1c110b4ae4ad0af
Binary files /dev/null and b/static/uploads/mask/voids/raw_mask.png differ
diff --git a/static/uploads/segmented/automatic/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5_pred.jpg b/static/uploads/segmented/automatic/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c6780664033acc985c09c1ce3c595467e9e3e0a5
Binary files /dev/null and b/static/uploads/segmented/automatic/02_JPG.rf.d6063f8ca200e543da7becc1bf260ed5_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98_pred.jpg b/static/uploads/segmented/automatic/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..53fa958e7a2dc661029ce443e99b6dec9f47f065
Binary files /dev/null and b/static/uploads/segmented/automatic/08_JPG.rf.1f81e954a3bbfc49dcd30e3ba0eb5e98_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/09_JPG.rf.9119efd8c174f968457a893669209835_pred.jpg b/static/uploads/segmented/automatic/09_JPG.rf.9119efd8c174f968457a893669209835_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..a235f3b90e22425392701edf2512e7bb6cc7d683
Binary files /dev/null and b/static/uploads/segmented/automatic/09_JPG.rf.9119efd8c174f968457a893669209835_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/10_JPG.rf.6745a7b3ea828239398b85182acba199_pred.jpg b/static/uploads/segmented/automatic/10_JPG.rf.6745a7b3ea828239398b85182acba199_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..54c0b310d17de83cf0df43b1fb36b363c14ad4d9
Binary files /dev/null and b/static/uploads/segmented/automatic/10_JPG.rf.6745a7b3ea828239398b85182acba199_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb_pred.jpg b/static/uploads/segmented/automatic/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f8e7cd3c134a1f41a87448bf764a2dc18468315b
Binary files /dev/null and b/static/uploads/segmented/automatic/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/12_jpg.rf.357643b374df92f81f9dee7c701b2315_pred.jpg b/static/uploads/segmented/automatic/12_jpg.rf.357643b374df92f81f9dee7c701b2315_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9d8b448d79abde4a5eddea506ac44eb0ec7721ec
Binary files /dev/null and b/static/uploads/segmented/automatic/12_jpg.rf.357643b374df92f81f9dee7c701b2315_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c_pred.jpg b/static/uploads/segmented/automatic/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..96f4bc949ef48c41321d654a339ad008cbde48ee
Binary files /dev/null and b/static/uploads/segmented/automatic/14_jpg.rf.d91472c724e7c34da4d96ac5e504044c_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0_pred.jpg b/static/uploads/segmented/automatic/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..65ca5e28eab24cd07c90db185b164c62f9071525
Binary files /dev/null and b/static/uploads/segmented/automatic/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536_pred.jpg b/static/uploads/segmented/automatic/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..c80f32e508a2a2e25a60c8d0cd3710cd05e44158
Binary files /dev/null and b/static/uploads/segmented/automatic/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba_pred.jpg b/static/uploads/segmented/automatic/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3a4ecae049c42c8f160146bedb05d1cb67279e98
Binary files /dev/null and b/static/uploads/segmented/automatic/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147_pred.jpg b/static/uploads/segmented/automatic/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..cea7467ea27a4b62cb024a0d7b67c976c83f5850
Binary files /dev/null and b/static/uploads/segmented/automatic/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab_pred.jpg b/static/uploads/segmented/automatic/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..bd37ca630143244d2b5cbfb7a3d7b24dd0abd9f3
Binary files /dev/null and b/static/uploads/segmented/automatic/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/29_jpg.rf.931769b58ae20d18d1f09d042bc44176_pred.jpg b/static/uploads/segmented/automatic/29_jpg.rf.931769b58ae20d18d1f09d042bc44176_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..7c8091d61aed18b2ba2177175359a893911d752e
Binary files /dev/null and b/static/uploads/segmented/automatic/29_jpg.rf.931769b58ae20d18d1f09d042bc44176_pred.jpg differ
diff --git a/static/uploads/segmented/automatic/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058_pred.jpg b/static/uploads/segmented/automatic/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058_pred.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ac40c44b30a36c7dc1ab15f4b36e8b918ffaf030
Binary files /dev/null and b/static/uploads/segmented/automatic/7-Figure14-1_jpg.rf.1c6cb204ed1f37c8fed44178a02e9058_pred.jpg differ
diff --git a/static/uploads/segmented/chips/blended_chips.png b/static/uploads/segmented/chips/blended_chips.png
new file mode 100644
index 0000000000000000000000000000000000000000..160bc0e96af90d18a99e7bdc59840fc74a0aa686
Binary files /dev/null and b/static/uploads/segmented/chips/blended_chips.png differ
diff --git a/static/uploads/segmented/chips/blended_image.png b/static/uploads/segmented/chips/blended_image.png
new file mode 100644
index 0000000000000000000000000000000000000000..1d8fbf1814f362d4cdf5b637de25362befe3ed4d
Binary files /dev/null and b/static/uploads/segmented/chips/blended_image.png differ
diff --git a/static/uploads/segmented/voids/blended_image.png b/static/uploads/segmented/voids/blended_image.png
new file mode 100644
index 0000000000000000000000000000000000000000..45b729389e40cc9aa196311076af6305de5ea98d
Binary files /dev/null and b/static/uploads/segmented/voids/blended_image.png differ
diff --git a/static/uploads/segmented/voids/blended_voids.png b/static/uploads/segmented/voids/blended_voids.png
new file mode 100644
index 0000000000000000000000000000000000000000..9aadb2a2d3bf8b8ca8cbecc64be92a27168a2052
Binary files /dev/null and b/static/uploads/segmented/voids/blended_voids.png differ
diff --git a/temp_backup/images/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg b/temp_backup/images/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ac452b8c15bf70a138cbc334e670fb75f2c4900e
Binary files /dev/null and b/temp_backup/images/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg differ
diff --git a/temp_backup/images/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg b/temp_backup/images/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..4cb1ec47ff7e172bcd876582462f9667c0118c19
Binary files /dev/null and b/temp_backup/images/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.jpg differ
diff --git a/temp_backup/images/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg b/temp_backup/images/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..3612ea8bad3b881d64ba82a7bcb3734fd0d3c301
Binary files /dev/null and b/temp_backup/images/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg differ
diff --git a/temp_backup/images/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg b/temp_backup/images/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..f7769c2afbed542791dc7aa6c99b8f731b993c3d
Binary files /dev/null and b/temp_backup/images/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.jpg differ
diff --git a/temp_backup/images/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg b/temp_backup/images/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..6a23e88255583db9dad0ae7d84c04aee4a17d7a1
Binary files /dev/null and b/temp_backup/images/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.jpg differ
diff --git a/temp_backup/images/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg b/temp_backup/images/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..368daef342ad0515e373f0c051f72717bdeb2d47
Binary files /dev/null and b/temp_backup/images/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.jpg differ
diff --git a/temp_backup/images/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg b/temp_backup/images/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..1e24609b75ed127858eb6fb66eba9d2274a09917
Binary files /dev/null and b/temp_backup/images/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.jpg differ
diff --git a/temp_backup/images/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg b/temp_backup/images/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..860d0363ad46861aea837591d26295477a608eac
Binary files /dev/null and b/temp_backup/images/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.jpg differ
diff --git a/temp_backup/images/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg b/temp_backup/images/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..5b357e7c557db3b68472b6f40accc04f469f33dd
Binary files /dev/null and b/temp_backup/images/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.jpg differ
diff --git a/temp_backup/images/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg b/temp_backup/images/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..9182db336422bdf0ac364af9fad89d9e0aa7ff4f
Binary files /dev/null and b/temp_backup/images/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.jpg differ
diff --git a/temp_backup/masks/chips/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png b/temp_backup/masks/chips/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png
new file mode 100644
index 0000000000000000000000000000000000000000..cfe59a8e858cb63a75e133f959eabb1ebdc0c20b
Binary files /dev/null and b/temp_backup/masks/chips/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png differ
diff --git a/temp_backup/masks/chips/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png b/temp_backup/masks/chips/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png
new file mode 100644
index 0000000000000000000000000000000000000000..9d8126856e3b0a8cbdd32ab02489700065839c4d
Binary files /dev/null and b/temp_backup/masks/chips/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png differ
diff --git a/temp_backup/masks/chips/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png b/temp_backup/masks/chips/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png
new file mode 100644
index 0000000000000000000000000000000000000000..b54dd093ebc3753379df1d30325ee7232f1a653d
Binary files /dev/null and b/temp_backup/masks/chips/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png differ
diff --git a/temp_backup/masks/chips/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png b/temp_backup/masks/chips/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png
new file mode 100644
index 0000000000000000000000000000000000000000..e4dbc826edcda87f39dd1998176e2162c379058c
Binary files /dev/null and b/temp_backup/masks/chips/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png differ
diff --git a/temp_backup/masks/chips/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png b/temp_backup/masks/chips/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png
new file mode 100644
index 0000000000000000000000000000000000000000..b1159aa308dd01a7b4ceb1c15d3fcc27f622f193
Binary files /dev/null and b/temp_backup/masks/chips/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png differ
diff --git a/temp_backup/masks/chips/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png b/temp_backup/masks/chips/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png
new file mode 100644
index 0000000000000000000000000000000000000000..685eb010a7a3ed2820a583c6f79669735e8d2a33
Binary files /dev/null and b/temp_backup/masks/chips/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png differ
diff --git a/temp_backup/masks/chips/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png b/temp_backup/masks/chips/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png
new file mode 100644
index 0000000000000000000000000000000000000000..8e1c3e1a7e9af6d64b521e132eb24145e5b89bdb
Binary files /dev/null and b/temp_backup/masks/chips/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png differ
diff --git a/temp_backup/masks/chips/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png b/temp_backup/masks/chips/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png
new file mode 100644
index 0000000000000000000000000000000000000000..49af8a089a365164655cb69ee999698285b16b31
Binary files /dev/null and b/temp_backup/masks/chips/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png differ
diff --git a/temp_backup/masks/chips/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png b/temp_backup/masks/chips/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png
new file mode 100644
index 0000000000000000000000000000000000000000..a9ba5fccb3f7f3eb5b2ce8a556812566f7d1770e
Binary files /dev/null and b/temp_backup/masks/chips/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png differ
diff --git a/temp_backup/masks/chips/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png b/temp_backup/masks/chips/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png
new file mode 100644
index 0000000000000000000000000000000000000000..085353f59f871492391434d027b1f664604dcfc7
Binary files /dev/null and b/temp_backup/masks/chips/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png differ
diff --git a/temp_backup/masks/voids/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png b/temp_backup/masks/voids/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png
new file mode 100644
index 0000000000000000000000000000000000000000..e6fc92f551a7d60c65f2df142a541bec91870f5d
Binary files /dev/null and b/temp_backup/masks/voids/11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.png differ
diff --git a/temp_backup/masks/voids/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png b/temp_backup/masks/voids/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png
new file mode 100644
index 0000000000000000000000000000000000000000..a2354e965cc811518a03465c31af0c198869fd95
Binary files /dev/null and b/temp_backup/masks/voids/15_jpg.rf.284413e4432b16253b4cd19f0c4f01e2.png differ
diff --git a/temp_backup/masks/voids/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png b/temp_backup/masks/voids/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png
new file mode 100644
index 0000000000000000000000000000000000000000..94ec31dbc470a83ad06750cbfc1dadacdae9e923
Binary files /dev/null and b/temp_backup/masks/voids/15r_jpg.rf.2da1990173346311d3a3555e23a9164a.png differ
diff --git a/temp_backup/masks/voids/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png b/temp_backup/masks/voids/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png
new file mode 100644
index 0000000000000000000000000000000000000000..b373067ac59737c435e4eada9171f4498416a89f
Binary files /dev/null and b/temp_backup/masks/voids/16_jpg.rf.9fdb4f56ec8596ddcc31db5bbffc26a0.png differ
diff --git a/temp_backup/masks/voids/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png b/temp_backup/masks/voids/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png
new file mode 100644
index 0000000000000000000000000000000000000000..3ccdfc5a7e3612a37167a117828aa10b31bb2322
Binary files /dev/null and b/temp_backup/masks/voids/20_jpg.rf.4a45f799ba16b5ff81ab1929f12a12b1.png differ
diff --git a/temp_backup/masks/voids/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png b/temp_backup/masks/voids/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png
new file mode 100644
index 0000000000000000000000000000000000000000..0151180865d7b664d7ffa51db606086a16f6c889
Binary files /dev/null and b/temp_backup/masks/voids/21_jpg.rf.d1d6dd254d2e5f396589ccc68a3c8536.png differ
diff --git a/temp_backup/masks/voids/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png b/temp_backup/masks/voids/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png
new file mode 100644
index 0000000000000000000000000000000000000000..a1c195f11edd403f3dabac42760e9049808c51e7
Binary files /dev/null and b/temp_backup/masks/voids/22_jpg.rf.a72964a78ea36c7bebe3a09cf27ef6ba.png differ
diff --git a/temp_backup/masks/voids/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png b/temp_backup/masks/voids/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png
new file mode 100644
index 0000000000000000000000000000000000000000..ac8e0a95d726259518793040157782d8ce667656
Binary files /dev/null and b/temp_backup/masks/voids/25_jpg.rf.893f4286e0c8a3cef2efb7612f248147.png differ
diff --git a/temp_backup/masks/voids/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png b/temp_backup/masks/voids/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png
new file mode 100644
index 0000000000000000000000000000000000000000..cd9732adb958f28969d2d88c1fe8af3bec378f12
Binary files /dev/null and b/temp_backup/masks/voids/26_jpg.rf.a03c550707ff22cd50ff7f54bebda7ab.png differ
diff --git a/temp_backup/masks/voids/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png b/temp_backup/masks/voids/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png
new file mode 100644
index 0000000000000000000000000000000000000000..13afab24243cbfaf4c21271b50bc0d41c2b38b51
Binary files /dev/null and b/temp_backup/masks/voids/29_jpg.rf.931769b58ae20d18d1f09d042bc44176.png differ
diff --git a/templates/index.html b/templates/index.html
new file mode 100644
index 0000000000000000000000000000000000000000..cbf5c21141d33d37be214a5f598faad99e93d23d
--- /dev/null
+++ b/templates/index.html
@@ -0,0 +1,137 @@
+<!DOCTYPE html>
+<html lang="en">
+<head>
+    <meta charset="UTF-8">
+    <meta name="viewport" content="width=device-width, initial-scale=1.0">
+    <title>Segmentation Tools</title>
+    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css">
+    <link rel="stylesheet" href="{{ url_for('static', filename='css/styles.css') }}">
+</head>
+<body>
+    <div class="container mt-4">
+        <!-- Header -->
+        <h1 class="text-center mb-4">Segmentation Tools</h1>
+
+        <!-- Interactive Segmentation Tool -->
+        <div class="tool-section mb-4">
+            <h2 class="text-center">Interactive Segmentation Tool</h2>
+            <div class="btn-group mb-3 d-flex justify-content-center">
+                <button id="voidsButton" class="btn btn-outline-primary active">Voids</button>
+                <button id="chipsButton" class="btn btn-outline-primary">Chips</button>
+            </div>
+            <div class="row">
+                <div class="col-md-6">
+                    <h5 class="text-center">Input Image</h5>
+                    <div class="canvas-container">
+                        <canvas id="inputCanvas"></canvas>
+                    </div>
+                    <button id="clearPoints" class="btn btn-danger mt-3">Clear Points</button>
+                </div>
+                <div class="col-md-6">
+                    <h5 class="text-center">Segmented Image</h5>
+                    <div class="canvas-container">
+                        <canvas id="segmentedCanvas"></canvas>
+                    </div>
+                    <div class="d-flex justify-content-end mt-3">
+                        <button id="historyButton" class="btn btn-secondary me-2">History</button>
+                        <button id="saveBothButton" class="btn btn-primary me-2">Save Both</button>
+                        <button id="retrainModelButton" class="btn btn-primary me-2">Retrain Model</button>
+                        <button id="cancelTrainingButton" class="btn btn-danger me-2" style="display: none;">Cancel Training</button>
+                        <button id="clearHistoryButton" class="btn btn-danger">Clear History</button>
+                    </div>
+                </div>
+            </div>
+            <input type="file" id="imageUpload" class="form-control mt-3">
+        </div>
+
+        <!-- Training Progress Indicator -->
+        <div id="trainingProgress" class="alert alert-info mt-3" style="display: none;">
+            <strong>Training in Progress:</strong> <span id="progressMessage">Initializing...</span>
+            <br>
+            <span id="estimatedTimeLeft">Estimated Time Left: Calculating...</span>
+        </div>
+
+        <!-- Automatic Segmentation Tool -->
+        <div class="tool-section">
+            <h2 class="text-center">Automatic Segmentation Tool</h2>
+            <div class="row">
+                <div class="col-md-6">
+                    <h5 class="text-center">Input Image</h5>
+                    <input type="file" id="automaticImageUpload" class="form-control">
+                </div>
+                <div class="col-md-6">
+                    <h5 class="text-center">Processed Image</h5>
+                    <div class="canvas-container">
+                        <img id="automaticProcessedImage" src="#" alt="Processed Image" style="display: none;">
+                    </div>
+                </div>
+            </div>
+        </div>
+
+        <!-- Results Table -->
+        <div class="tool-section">
+            <h2 class="text-center">Segmentation Results</h2>
+            <table class="table">
+                <thead>
+                    <tr>
+                        <th>Image Name</th>
+                        <th>Chip #</th>
+                        <th>Chip Area</th>
+                        <th>Void %</th>
+                        <th>Max Void %</th>
+                    </tr>
+                </thead>
+                <tbody id="resultsTableBody">
+                    <!-- Dynamic rows will be added here -->
+                </tbody>
+            </table>
+            <div class="d-flex justify-content-end mt-3">
+                <button id="clearTableButton" class="btn btn-primary me-2">Clear Table</button>
+                <button id="exportTableButton" class="btn btn-primary">Export Table</button>
+            </div>
+        </div>
+    </div>        
+
+    <!-- History Modal -->
+    <div class="modal fade" id="historyModal" tabindex="-1" aria-labelledby="historyModalLabel" aria-hidden="true">
+        <div class="modal-dialog modal-dialog-centered">
+            <div class="modal-content">
+                <div class="modal-header">
+                    <h5 class="modal-title" id="historyModalLabel">Saved History</h5>
+                    <button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
+                </div>
+                <div class="modal-body">
+                    <ul id="historyList" class="list-group">
+                        <!-- Example List Item -->
+                        <li class="list-group-item">
+                            <span class="filename">11_JPG.rf.3aa3109a1838549cf273cdbe8b2cafeb.jpg</span>
+                            <button class="btn btn-danger">Delete</button>
+                        </li>
+                        <li class="list-group-item">
+                            <span class="filename">15r_jpg.rf.2da1990173346311d3a3555e23a9164a.jpg</span>
+                            <button class="btn btn-danger">Delete</button>
+                        </li>
+                    </ul>
+                </div>
+                <div class="modal-footer">
+                    <button type="button" class="btn btn-secondary" data-bs-dismiss="modal">Close</button>
+                </div>
+            </div>
+        </div>
+    </div>
+
+
+    <script>
+        // Ensure the modal backdrop is properly removed when the modal is closed
+        document.getElementById('historyModal').addEventListener('hidden.bs.modal', function () {
+            document.body.classList.remove('modal-open');
+            const backdrop = document.querySelector('.modal-backdrop');
+            if (backdrop) {
+                backdrop.remove();
+            }
+        });
+    </script>
+    <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/js/bootstrap.bundle.min.js"></script>
+    <script src="{{ url_for('static', filename='js/app.js') }}"></script>
+</body>
+</html>
diff --git a/utils/__init__.py b/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/utils/__pycache__/__init__.cpython-311.pyc b/utils/__pycache__/__init__.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..7471c80806948ab99a064501a26cfe7dc8ccd3ae
Binary files /dev/null and b/utils/__pycache__/__init__.cpython-311.pyc differ
diff --git a/utils/__pycache__/helpers.cpython-311.pyc b/utils/__pycache__/helpers.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..184f8d72303fed8f7c7f52427fe8ea12b9b20f24
Binary files /dev/null and b/utils/__pycache__/helpers.cpython-311.pyc differ
diff --git a/utils/__pycache__/predictor.cpython-311.pyc b/utils/__pycache__/predictor.cpython-311.pyc
new file mode 100644
index 0000000000000000000000000000000000000000..e9b4bcb5833e2f0a6243900d0e56562f56922a16
Binary files /dev/null and b/utils/__pycache__/predictor.cpython-311.pyc differ
diff --git a/utils/helpers.py b/utils/helpers.py
new file mode 100644
index 0000000000000000000000000000000000000000..129147f109dc13541220e126be1ab7e9b43f8f7d
--- /dev/null
+++ b/utils/helpers.py
@@ -0,0 +1,74 @@
+import numpy as np
+from PIL import Image
+import cv2
+import os
+import shutil
+
+def blend_mask_with_image(image, mask, color):
+    """Blend the mask with the original image using a transparent color overlay."""
+    mask_rgb = np.stack([mask * color[i] for i in range(3)], axis=-1)
+    blended = (0.7 * image + 0.3 * mask_rgb).astype(np.uint8)
+    return blended
+
+def save_mask_as_png(mask, path):
+    """Save the binary mask as a PNG."""
+    mask_image = Image.fromarray((mask * 255).astype(np.uint8))
+    mask_image.save(path)
+
+def convert_mask_to_yolo(mask_path, image_path, class_id, output_path, append=False):
+    """
+    Convert a binary mask to YOLO-compatible segmentation labels.
+
+    Args:
+        mask_path (str): Path to the binary mask image.
+        image_path (str): Path to the corresponding image.
+        class_id (int): Class ID (e.g., 0 for void, 1 for chip).
+        output_path (str): Path to save the YOLO label (.txt) file.
+        append (bool): Whether to append labels to the file.
+
+    Returns:
+        None
+    """
+    try:
+        # Load the binary mask
+        mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
+        if mask is None:
+            raise ValueError(f"Mask not found or invalid: {mask_path}")
+
+        # Load the corresponding image to get dimensions
+        image = cv2.imread(image_path)
+        if image is None:
+            raise ValueError(f"Image not found or invalid: {image_path}")
+
+        h, w = image.shape[:2]  # Image height and width
+
+        # Find contours in the mask
+        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
+
+        # Determine file mode: "w" for overwrite or "a" for append
+        file_mode = "a" if append else "w"
+
+        # Open the output .txt file
+        with open(output_path, file_mode) as label_file:
+            for contour in contours:
+                # Simplify the contour points to reduce the number of vertices
+                epsilon = 0.01 * cv2.arcLength(contour, True)  # Tolerance for approximation
+                contour = cv2.approxPolyDP(contour, epsilon, True)
+
+                # Normalize contour points (polygon vertices)
+                normalized_vertices = []
+                for point in contour:
+                    x, y = point[0]  # Extract x, y from the point
+                    x_normalized = x / w
+                    y_normalized = y / h
+                    normalized_vertices.extend([x_normalized, y_normalized])
+
+                # Write the polygon annotation to the label file
+                if len(normalized_vertices) >= 6:  # At least 3 points required for a polygon
+                    label_file.write(f"{class_id} " + " ".join(f"{v:.6f}" for v in normalized_vertices) + "\n")
+
+        print(f"YOLO segmentation label saved: {output_path}")
+
+    except Exception as e:
+        print(f"Error converting mask to YOLO format: {e}")
+        raise RuntimeError(f"Failed to convert {mask_path} for class {class_id}: {e}")
diff --git a/utils/predictor.py b/utils/predictor.py
new file mode 100644
index 0000000000000000000000000000000000000000..0e0e358117a71ea711b1d221034341a23599f0f0
--- /dev/null
+++ b/utils/predictor.py
@@ -0,0 +1,26 @@
+import numpy as np
+from sam2.build_sam import build_sam2
+from sam2.sam2_image_predictor import SAM2ImagePredictor
+
+class Predictor:
+    def __init__(self, model_cfg, checkpoint, device):
+        self.device = device
+        self.model = build_sam2(model_cfg, checkpoint, device=device)
+        self.predictor = SAM2ImagePredictor(self.model)
+        self.image_set = False
+
+    def set_image(self, image):
+        """Set the image for SAM prediction."""
+        self.image = image
+        self.predictor.set_image(image)
+        self.image_set = True
+
+    def predict(self, point_coords, point_labels, multimask_output=False):
+        """Run SAM prediction."""
+        if not self.image_set:
+            raise RuntimeError("An image must be set with .set_image(...) before mask prediction.")
+        return self.predictor.predict(
+            point_coords=point_coords,
+            point_labels=point_labels,
+            multimask_output=multimask_output
+        )
diff --git a/yolo11n.pt b/yolo11n.pt
new file mode 100644
index 0000000000000000000000000000000000000000..c7723db027d009343e9682f261370833fd6f0d84
--- /dev/null
+++ b/yolo11n.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0ebbc80d4a7680d14987a577cd21342b65ecfd94632bd9a8da63ae6417644ee1
+size 5613764