Spaces:
Sleeping
Sleeping
""" | |
Minimal (byte-level) Byte Pair Encoding tokenizer. | |
Algorithmically follows along the GPT tokenizer: | |
https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
But: | |
- Does not handle the regular expression splitting pattern. | |
- Does not handle any special tokens. | |
""" | |
import copy | |
from .base import Tokenizer, get_stats, merge | |
# class BasicTokenizer(Tokenizer): | |
# | |
# def __init__(self): | |
# super().__init__() | |
# | |
# def train(self, text, vocab_size, verbose=False): | |
# assert vocab_size >= 256 | |
# num_merges = vocab_size - 256 | |
# | |
# # input text preprocessing | |
# text_bytes = text.encode("utf-8") # raw bytes | |
# ids = list(text_bytes) # list of integers in range 0..255 | |
# | |
# # iteratively merge the most common pairs to create new tokens | |
# merges = {} # (int, int) -> int | |
# vocab = {idx: bytes([idx]) for idx in range(256)} # int -> bytes | |
# for i in range(num_merges): | |
# # count up the number of times every consecutive pair appears | |
# stats = get_stats(ids) | |
# # find the pair with the highest count | |
# pair = max(stats, key=stats.get) | |
# # mint a new token: assign it the next available id | |
# idx = 256 + i | |
# # replace all occurrences of pair in ids with idx | |
# ids = merge(ids, pair, idx) | |
# # save the merge | |
# merges[pair] = idx | |
# vocab[idx] = vocab[pair[0]] + vocab[pair[1]] | |
# # prints | |
# if verbose: | |
# print(f"merge {i + 1}/{num_merges}: {pair} -> {idx} ({vocab[idx]}) had {stats[pair]} occurrences") | |
# | |
# # save class variables | |
# self.merges = merges # used in encode() | |
# self.vocab = vocab # used in decode() | |
# | |
# def decode(self, ids): | |
# # given ids (list of integers), return Python string | |
# text_bytes = b"".join(self.vocab[idx] for idx in ids) | |
# text = text_bytes.decode("utf-8", errors="replace") | |
# return text | |
# | |
# def encode(self, text): | |
# # given a string text, return the token ids | |
# text_bytes = text.encode("utf-8") # raw bytes | |
# ids = list(text_bytes) # list of integers in range 0..255 | |
# while len(ids) >= 2: | |
# # find the pair with the lowest merge index | |
# stats = get_stats(ids) | |
# pair = min(stats, key=lambda p: self.merges.get(p, float("inf"))) | |
# # subtle: if there are no more merges available, the key will | |
# # result in an inf for every single pair, and the min will be | |
# # just the first pair in the list, arbitrarily | |
# # we can detect this terminating case by a membership check | |
# if pair not in self.merges: | |
# break # nothing else can be merged anymore | |
# # otherwise let's merge the best pair (lowest merge index) | |
# idx = self.merges[pair] | |
# ids = merge(ids, pair, idx) | |
# return ids | |
class BasicTokenizer(Tokenizer): | |
def __init__(self): | |
super().__init__() | |
self.merge_counter = 0 | |
def train(self, text, vocab_size, verbose=False): | |
# left assert in place just to introduce consistency and a hard check of the increase in vocab size and number of merges | |
assert vocab_size >= 256 | |
num_merges = vocab_size - 256 | |
current_batch_merge_counter = 0 # in case not all exact `num_merges` happen | |
# input text preprocessing | |
text_bytes = text.encode("utf-8") # encode to get all waw bytes | |
ids = list(text_bytes) # represent the bytes in ints | |
# use same merge dict if exists | |
self.merges = {} if self.merges is None else self.merges # to hold all merges (int, int) -> int | |
# Use same vocab for this Tokenizer object if it exists | |
# Tokenizer vocab: int -> bytes | |
self.vocab = {idx: bytes([idx]) for idx in range(256)} if self.vocab is None else self.vocab | |
# iteratively merge the MOST COMMON pair from the text | |
for i in range(num_merges): | |
# get count of pairs | |
stats = get_stats(ids) | |
# find the pair with the highest count | |
# pair = max(stats, key=stats.get) | |
# tmp_stats = copy.deepcopy(stats) | |
# get most occurring pair from ids | |
pair = max(stats, key=stats.get) | |
while pair in self.merges: | |
# pair was previously merged ... use this first to update IDS | |
# No need to add to merges and vocab, use previously stored token | |
already_merged_idx = self.merges[pair] | |
# just replace already merged pairs in ids and get new ids and no need to again add to merges and vocab | |
ids = merge(ids, pair, already_merged_idx) | |
stats = get_stats(ids) | |
if stats and len(ids) >= 2: | |
pair = max(stats, key=stats.get) | |
else: | |
# no new merges found in this incoming data batch | |
print(f"\n\nstopping merges as no new byte pair found in the current batch") | |
break | |
# this most occurring pair not merged yet in any data batch | |
# generate a new token considering how many have been generated so far for the same tokenizer | |
idx = len(self.vocab) + 1 | |
# update current new generated tokens to add to self.merge_counter later | |
current_batch_merge_counter += 1 | |
# replace all occurrences of `pair` above in `ids` with NEW `idx` token, add this one to merges & vocab | |
# Note: this pair has never been seen for merging | |
ids = merge(ids, pair, idx) | |
self.merges[pair] = idx | |
self.vocab[idx] = self.vocab[pair[0]] + self.vocab[pair[1]] | |
if verbose: | |
print(f"merge {i + 1}/{num_merges}: {pair} -> {idx} ({self.vocab[idx]}) had {stats[pair]} count") | |
self.merge_counter += current_batch_merge_counter | |
def decode(self, ids): | |
# given ids (list of integers), return Python string | |
text_bytes = b"".join(self.vocab[idx] for idx in ids) | |
text = text_bytes.decode("utf-8", errors="replace") | |
return text | |
def encode(self, text): | |
# input a string text, returns the token ids | |
text_bytes = text.encode("utf-8") | |
ids = list(text_bytes) | |
while len(ids) >= 2: | |
# here find the pair with the lowest merge index | |
stats = get_stats(ids) | |
pair = min(stats, key=lambda p: self.merges.get(p, float("inf"))) | |
# if no merges i.e. the pair is not in merges dict, | |
# the key will result in an `inf` for every single pair, | |
# and the min will be just the first pair in the list, | |
# we can detect this terminating case by a membership check | |
if pair not in self.merges: | |
break # nothing else can be merged anymore | |
# otherwise merge the best pair NOTE: (lowest merge index) | |
idx = self.merges[pair] | |
ids = merge(ids, pair, idx) | |
return ids | |