Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from datasets import load_dataset
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Constants
|
@@ -10,9 +11,12 @@ universities_url = "https://www.4icu.org/top-universities-world/"
|
|
10 |
def load_datasets():
|
11 |
ds_jobs = load_dataset("lukebarousse/data_jobs")
|
12 |
ds_courses = load_dataset("azrai99/coursera-course-dataset")
|
13 |
-
|
|
|
|
|
|
|
14 |
|
15 |
-
ds_jobs, ds_courses = load_datasets()
|
16 |
|
17 |
# Initialize the pipeline with caching, using an accessible model like 'google/flan-t5-large'
|
18 |
@st.cache_resource
|
@@ -42,6 +46,30 @@ if st.sidebar.button("Save Profile"):
|
|
42 |
}
|
43 |
st.sidebar.success("Profile saved successfully!")
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
# Intelligent Q&A Section
|
46 |
st.header("Intelligent Q&A")
|
47 |
question = st.text_input("Ask a career-related question:")
|
@@ -54,11 +82,18 @@ st.header("Career and Job Recommendations")
|
|
54 |
if "profile_data" in st.session_state:
|
55 |
job_recommendations = []
|
56 |
for job in ds_jobs["train"]:
|
57 |
-
# Use an empty string if 'job_skills' is None
|
58 |
job_skills = job.get("job_skills", "") or ""
|
59 |
if any(skill.lower() in job_skills.lower() for skill in st.session_state.profile_data["tech_skills"].split(",")):
|
60 |
job_recommendations.append(job.get("job_title_short", "Unknown Job Title"))
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
if job_recommendations:
|
63 |
st.subheader("Job Recommendations")
|
64 |
st.write("Based on your profile, here are some potential job roles:")
|
@@ -67,15 +102,22 @@ if "profile_data" in st.session_state:
|
|
67 |
else:
|
68 |
st.write("No specific job recommendations found matching your profile.")
|
69 |
|
70 |
-
|
71 |
# Course Suggestions Section
|
72 |
st.header("Course Suggestions")
|
73 |
if "profile_data" in st.session_state:
|
74 |
course_recommendations = [
|
75 |
-
course.get("
|
76 |
-
if any(interest.lower() in course.get("
|
77 |
]
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
if course_recommendations:
|
80 |
st.subheader("Recommended Courses")
|
81 |
st.write("Here are some courses related to your interests:")
|
@@ -89,5 +131,10 @@ st.header("Top Universities")
|
|
89 |
st.write("For further education, you can explore the top universities worldwide:")
|
90 |
st.write(f"[View Top Universities Rankings]({universities_url})")
|
91 |
|
|
|
|
|
|
|
|
|
|
|
92 |
# Conclusion
|
93 |
st.write("Thank you for using the Career Counseling Application!")
|
|
|
1 |
import streamlit as st
|
2 |
from datasets import load_dataset
|
3 |
+
import pandas as pd
|
4 |
from transformers import pipeline
|
5 |
|
6 |
# Constants
|
|
|
11 |
def load_datasets():
|
12 |
ds_jobs = load_dataset("lukebarousse/data_jobs")
|
13 |
ds_courses = load_dataset("azrai99/coursera-course-dataset")
|
14 |
+
ds_custom_courses = pd.read_csv("final_cleaned_merged_coursera_courses.csv")
|
15 |
+
ds_custom_jobs = pd.read_csv("merged_data_science_jobs.csv")
|
16 |
+
ds_custom_universities = pd.read_csv("merged_university_data_cleaned (1).csv")
|
17 |
+
return ds_jobs, ds_courses, ds_custom_courses, ds_custom_jobs, ds_custom_universities
|
18 |
|
19 |
+
ds_jobs, ds_courses, ds_custom_courses, ds_custom_jobs, ds_custom_universities = load_datasets()
|
20 |
|
21 |
# Initialize the pipeline with caching, using an accessible model like 'google/flan-t5-large'
|
22 |
@st.cache_resource
|
|
|
46 |
}
|
47 |
st.sidebar.success("Profile saved successfully!")
|
48 |
|
49 |
+
# Questions Section (Appears after profile submission)
|
50 |
+
if "profile_data" in st.session_state:
|
51 |
+
st.header("Answer the Following Questions:")
|
52 |
+
questions = [
|
53 |
+
"What do you see yourself achieving in the next five years?",
|
54 |
+
"Which skills would you like to develop further? (Examples: leadership, technical expertise, communication, etc.)",
|
55 |
+
"Do you prefer a structured routine or a more flexible, varied work environment?",
|
56 |
+
"What’s most important to you in a job? (e.g., work-life balance, job stability, opportunities for growth, impact on society)",
|
57 |
+
"What types of projects or tasks energize you? (e.g., solving complex problems, helping others, creating something new)",
|
58 |
+
"Are you comfortable with roles that may involve public speaking or presenting ideas?",
|
59 |
+
"How do you handle stress or pressure in a work setting? (Select options: I thrive under pressure, I manage well, I prefer lower-stress environments)",
|
60 |
+
"Would you be open to relocation or travel for your job?",
|
61 |
+
"Do you prioritize high salary potential or job satisfaction when considering a career?",
|
62 |
+
"What kind of work culture are you drawn to? (e.g., collaborative, competitive, mission-driven, innovative)"
|
63 |
+
]
|
64 |
+
|
65 |
+
answers = {}
|
66 |
+
for question in questions:
|
67 |
+
answers[question] = st.text_input(question)
|
68 |
+
|
69 |
+
if st.button("Submit Answers"):
|
70 |
+
st.session_state.answers = answers
|
71 |
+
st.success("Your answers have been saved!")
|
72 |
+
|
73 |
# Intelligent Q&A Section
|
74 |
st.header("Intelligent Q&A")
|
75 |
question = st.text_input("Ask a career-related question:")
|
|
|
82 |
if "profile_data" in st.session_state:
|
83 |
job_recommendations = []
|
84 |
for job in ds_jobs["train"]:
|
|
|
85 |
job_skills = job.get("job_skills", "") or ""
|
86 |
if any(skill.lower() in job_skills.lower() for skill in st.session_state.profile_data["tech_skills"].split(",")):
|
87 |
job_recommendations.append(job.get("job_title_short", "Unknown Job Title"))
|
88 |
|
89 |
+
for _, job in ds_custom_jobs.iterrows():
|
90 |
+
job_skills = job.get("skills", "") or ""
|
91 |
+
if any(skill.lower() in job_skills.lower() for skill in st.session_state.profile_data["tech_skills"].split(",")):
|
92 |
+
job_recommendations.append(job.get("job_title", "Unknown Job Title"))
|
93 |
+
|
94 |
+
# Remove duplicates by converting the list to a set and back to a list
|
95 |
+
job_recommendations = list(set(job_recommendations))
|
96 |
+
|
97 |
if job_recommendations:
|
98 |
st.subheader("Job Recommendations")
|
99 |
st.write("Based on your profile, here are some potential job roles:")
|
|
|
102 |
else:
|
103 |
st.write("No specific job recommendations found matching your profile.")
|
104 |
|
|
|
105 |
# Course Suggestions Section
|
106 |
st.header("Course Suggestions")
|
107 |
if "profile_data" in st.session_state:
|
108 |
course_recommendations = [
|
109 |
+
course.get("Course Name", "Unknown Course Title") for course in ds_courses["train"]
|
110 |
+
if any(interest.lower() in course.get("Course Name", "").lower() for interest in st.session_state.profile_data["interests"].split(","))
|
111 |
]
|
112 |
|
113 |
+
course_recommendations.extend([
|
114 |
+
row["Course Name"] for _, row in ds_custom_courses.iterrows()
|
115 |
+
if any(interest.lower() in row["Course Name"].lower() for interest in st.session_state.profile_data["interests"].split(","))
|
116 |
+
])
|
117 |
+
|
118 |
+
# Remove duplicates from course recommendations
|
119 |
+
course_recommendations = list(set(course_recommendations))
|
120 |
+
|
121 |
if course_recommendations:
|
122 |
st.subheader("Recommended Courses")
|
123 |
st.write("Here are some courses related to your interests:")
|
|
|
131 |
st.write("For further education, you can explore the top universities worldwide:")
|
132 |
st.write(f"[View Top Universities Rankings]({universities_url})")
|
133 |
|
134 |
+
st.subheader("Custom University Data")
|
135 |
+
if not ds_custom_universities.empty:
|
136 |
+
st.write("Here are some recommended universities based on custom data:")
|
137 |
+
st.dataframe(ds_custom_universities.head())
|
138 |
+
|
139 |
# Conclusion
|
140 |
st.write("Thank you for using the Career Counseling Application!")
|