Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,8 @@ model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE",
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
|
19 |
|
20 |
|
|
|
|
|
21 |
def video_to_frames(video, fps=1):
|
22 |
"""Converts a video file into frames and stores them as PNG images in a list."""
|
23 |
frames_png = []
|
@@ -59,31 +61,13 @@ def extract_frames(frame):
|
|
59 |
|
60 |
return image_bgr
|
61 |
|
62 |
-
def predict_answer(image, video, question
|
63 |
|
64 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
65 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
66 |
|
67 |
-
# frames = video_to_frames(video)
|
68 |
-
# answers = []
|
69 |
-
# for i in range(len(frames)):
|
70 |
-
# image = extract_frames(frames[i])
|
71 |
-
# image_tensor = model.image_preprocess([image])
|
72 |
-
|
73 |
-
# # Generate the answer
|
74 |
-
# output_ids = model.generate(
|
75 |
-
# input_ids,
|
76 |
-
# max_new_tokens=max_tokens,
|
77 |
-
# images=image_tensor,
|
78 |
-
# use_cache=True)[0]
|
79 |
-
|
80 |
-
# answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
81 |
-
# answers.append(answer)
|
82 |
-
# return answers
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
if image:
|
87 |
# Process as an image
|
88 |
image = image.convert("RGB")
|
89 |
image_tensor = model.image_preprocess(image)
|
@@ -91,30 +75,30 @@ def predict_answer(image, video, question, max_tokens=100):
|
|
91 |
#Generate the answer
|
92 |
output_ids = model.generate(
|
93 |
input_ids,
|
94 |
-
max_new_tokens=
|
95 |
images=image_tensor,
|
96 |
use_cache=True)[0]
|
97 |
|
98 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
99 |
|
100 |
-
elif video:
|
101 |
# Process as a video
|
102 |
frames = video_to_frames(video)
|
103 |
answers = []
|
104 |
-
for
|
105 |
-
image = extract_frames(
|
106 |
image_tensor = model.image_preprocess([image])
|
107 |
|
108 |
# Generate the answer
|
109 |
output_ids = model.generate(
|
110 |
input_ids,
|
111 |
-
max_new_tokens=
|
112 |
images=image_tensor,
|
113 |
use_cache=True)[0]
|
114 |
|
115 |
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
116 |
answers.append(answer)
|
117 |
-
return
|
118 |
|
119 |
else:
|
120 |
return "Unsupported file type. Please upload an image or video."
|
@@ -122,39 +106,47 @@ def predict_answer(image, video, question, max_tokens=100):
|
|
122 |
|
123 |
|
124 |
|
125 |
-
def gradio_predict(image, video, question
|
126 |
-
answer = predict_answer(image, video, question
|
127 |
return answer
|
128 |
|
129 |
-
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
#
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
with gr.Row():
|
148 |
-
image = gr.Image(type="pil", label="Upload or Drag an Image")
|
149 |
video = gr.Video(label="Upload your video here")
|
|
|
150 |
with gr.Row():
|
151 |
with gr.Column():
|
152 |
-
question = gr.Textbox(label="Question", placeholder="
|
153 |
-
|
154 |
with gr.Column():
|
155 |
answer = gr.TextArea(label="Answer")
|
156 |
|
157 |
-
|
158 |
-
btn.click(gradio_predict, inputs=[image, video, question
|
159 |
|
160 |
app.launch(debug=True)
|
|
|
|
18 |
tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True)
|
19 |
|
20 |
|
21 |
+
|
22 |
+
|
23 |
def video_to_frames(video, fps=1):
|
24 |
"""Converts a video file into frames and stores them as PNG images in a list."""
|
25 |
frames_png = []
|
|
|
61 |
|
62 |
return image_bgr
|
63 |
|
64 |
+
def predict_answer(image, video, question):
|
65 |
|
66 |
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:"
|
67 |
input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device)
|
68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
if image is not None:
|
71 |
# Process as an image
|
72 |
image = image.convert("RGB")
|
73 |
image_tensor = model.image_preprocess(image)
|
|
|
75 |
#Generate the answer
|
76 |
output_ids = model.generate(
|
77 |
input_ids,
|
78 |
+
max_new_tokens=25,
|
79 |
images=image_tensor,
|
80 |
use_cache=True)[0]
|
81 |
|
82 |
return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
83 |
|
84 |
+
elif video is not None:
|
85 |
# Process as a video
|
86 |
frames = video_to_frames(video)
|
87 |
answers = []
|
88 |
+
for frame in frames:
|
89 |
+
image = extract_frames(frame)
|
90 |
image_tensor = model.image_preprocess([image])
|
91 |
|
92 |
# Generate the answer
|
93 |
output_ids = model.generate(
|
94 |
input_ids,
|
95 |
+
max_new_tokens=25,
|
96 |
images=image_tensor,
|
97 |
use_cache=True)[0]
|
98 |
|
99 |
answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()
|
100 |
answers.append(answer)
|
101 |
+
return "\n".join(answers)
|
102 |
|
103 |
else:
|
104 |
return "Unsupported file type. Please upload an image or video."
|
|
|
106 |
|
107 |
|
108 |
|
109 |
+
def gradio_predict(image, video, question):
|
110 |
+
answer = predict_answer(image, video, question)
|
111 |
return answer
|
112 |
|
113 |
+
css = """
|
114 |
+
#container{
|
115 |
+
display: block;
|
116 |
+
margin-left: auto;
|
117 |
+
margin-right: auto;
|
118 |
+
width: 50%;
|
119 |
+
}
|
120 |
+
#intro{
|
121 |
+
max-width: 100%;
|
122 |
+
margin: 0 auto;
|
123 |
+
text-align: center;
|
124 |
+
}
|
125 |
+
|
126 |
+
"""
|
127 |
+
with gr.Blocks(css = css) as app:
|
128 |
+
with gr.Row(elem_id="container"):
|
129 |
+
gr.Markdown("""<div style='text-align: center;'><img src="https://github-production-user-asset-6210df.s3.amazonaws.com/37763863/311454340-af72f848-9735-4d49-830b-885ffbb81091.jpeg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240309%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240309T165700Z&X-Amz-Expires=300&X-Amz-Signature=51aeb4811afff72e70c083594aaffcca1f4a2b95ddd4adf23ee5e736e4fbfefe&X-Amz-SignedHeaders=host&actor_id=37763863&key_id=0&repo_id=769602947" width="1000" height="500" /></div>""")
|
130 |
+
|
131 |
+
gr.Markdown("""
|
132 |
+
## This Gradio app serves as four folds:
|
133 |
+
### 1. My ability and experience to design a customizable Gradio application with Interface/Blocks structure.
|
134 |
+
### 2. One of my Multimodel Vision-Language model's capabilities with the LLaVA framework.
|
135 |
+
### 3. Demo for annotating random images and 4 second videos provided at Notion (https://shorturl.at/givyC)
|
136 |
+
### 4. Ability to integrate a Large Language Model and Vision Encoder
|
137 |
+
""")
|
138 |
with gr.Row():
|
|
|
139 |
video = gr.Video(label="Upload your video here")
|
140 |
+
image = gr.Image(type="pil", label="Upload or Drag an Image")
|
141 |
with gr.Row():
|
142 |
with gr.Column():
|
143 |
+
question = gr.Textbox(label="Question", placeholder="Annotate prompt", lines=4.3)
|
144 |
+
btn = gr.Button("Annotate")
|
145 |
with gr.Column():
|
146 |
answer = gr.TextArea(label="Answer")
|
147 |
|
148 |
+
|
149 |
+
btn.click(gradio_predict, inputs=[image, video, question], outputs=answer)
|
150 |
|
151 |
app.launch(debug=True)
|
152 |
+
|