Spaces:
Paused
Paused
| import gradio as gr | |
| from PIL import Image | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import cv2 | |
| import numpy as np | |
| import ast | |
| # # Ensure GPU usage if available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # Initialize the model and tokenizer | |
| model = AutoModelForCausalLM.from_pretrained("ManishThota/SparrowVQE", | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| trust_remote_code=True) | |
| tokenizer = AutoTokenizer.from_pretrained("ManishThota/SparrowVQE", trust_remote_code=True) | |
| def video_to_frames(video, fps=1): | |
| """Converts a video file into frames and stores them as PNG images in a list.""" | |
| frames_png = [] | |
| cap = cv2.VideoCapture(video) | |
| if not cap.isOpened(): | |
| print("Error opening video file") | |
| return frames_png | |
| frame_count = 0 | |
| frame_interval = int(cap.get(cv2.CAP_PROP_FPS)) // fps # Calculate frame interval | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| print("Can't receive frame (stream end?). Exiting ...") | |
| break | |
| if frame_count % frame_interval == 0: | |
| is_success, buffer = cv2.imencode(".png", frame) | |
| if is_success: | |
| frames_png.append(np.array(buffer).tobytes()) | |
| frame_count += 1 | |
| cap.release() | |
| return frames_png | |
| def extract_frames(frame): | |
| # Convert binary data to a numpy array | |
| frame_np = np.frombuffer(frame, dtype=np.uint8) | |
| # Decode the PNG image | |
| image_rgb = cv2.imdecode(frame_np, flags=cv2.IMREAD_COLOR) # Assuming it's in RGB format | |
| # Convert RGB to BGR | |
| image_bgr = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR) | |
| return image_bgr | |
| def predict_answer(image, video, question): | |
| text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{question}? ASSISTANT:" | |
| input_ids = tokenizer(text, return_tensors='pt').input_ids.to(device) | |
| if image is not None: | |
| # Process as an image | |
| image = image.convert("RGB") | |
| image_tensor = model.image_preprocess(image) | |
| #Generate the answer | |
| output_ids = model.generate( | |
| input_ids, | |
| max_new_tokens=25, | |
| images=image_tensor, | |
| use_cache=True)[0] | |
| return tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
| elif video is not None: | |
| # Process as a video | |
| frames = video_to_frames(video) | |
| answers = [] | |
| for frame in frames: | |
| image = extract_frames(frame) | |
| image_tensor = model.image_preprocess([image]) | |
| # Generate the answer | |
| output_ids = model.generate( | |
| input_ids, | |
| max_new_tokens=25, | |
| images=image_tensor, | |
| use_cache=True)[0] | |
| answer = tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip() | |
| answers.append(answer) | |
| return ast.literal_eval(answers[0]) | |
| else: | |
| return "Unsupported file type. Please upload an image or video." | |
| promt_cat_dog = """ | |
| Annotate this image with this schema: | |
| { | |
| “description”: “Is there a cat in the image?”, | |
| “value”: “Cat” | |
| }, | |
| { | |
| “description”: “Is there a dog in the image?”, | |
| “value”: “Dog” | |
| }, | |
| { | |
| “description”: “Is there a horse in the image?”, | |
| “value”: “Horse” | |
| }, | |
| provide me the answers as a dictionary with key as the string value of the variable value on top and its value should be 0 if it is Flase, else 1 if its is True | |
| """ | |
| promt_bus_people = """ | |
| Annotate this image with this schema: | |
| { | |
| “description”: “Is there a bus in the image?”, | |
| “value”: “Bus” | |
| }, | |
| { | |
| “description”: “Is there a bike in the image?”, | |
| “value”: “Bike” | |
| }, | |
| provide me the answers as a dictionary with key as the string value of the variable value on top and its value should be 0 if it is Flase, else 1 if its is True | |
| """ | |
| promt_video = """ | |
| Annotate this image with this schema: | |
| { | |
| “description”: “Is the person standing?”, | |
| “value”: “Standing” | |
| }, | |
| { | |
| “description”: “Is the person hands free?”, | |
| “value”: “Hands-Free” | |
| } | |
| provide me the answers as a dictionary with key as the string value of the variable value on top and its value should be 0 if it is Flase, else 1 if its is True | |
| """ | |
| test_examples = [[None, "Images/cat_dog.jpeg", promt_cat_dog], | |
| [None,"Images/bus_people.jpeg", promt_bus_people], | |
| ["videos/v1.mp4",None,promt_video], | |
| ["videos/v2.mp4",None,promt_video], | |
| ["videos/v3.mp4",None,promt_video]] | |
| def gradio_predict(image, video, question): | |
| answer = predict_answer(image, video, question) | |
| return answer | |
| css = """ | |
| #container{ | |
| display: block; | |
| margin-left: auto; | |
| margin-right: auto; | |
| width: 60%; | |
| } | |
| #intro{ | |
| max-width: 100%; | |
| margin: 0 auto; | |
| text-align: center; | |
| } | |
| """ | |
| with gr.Blocks(css = css) as app: | |
| with gr.Row(elem_id="container"): | |
| gr.Image("gsoc_redhen.png",min_width=60, label="GSOC 2024") | |
| gr.Markdown(""" | |
| ## This Gradio app serves as four folds: | |
| ### 1. My ability and experience to design a customizable Gradio application with Interface/Blocks structure. | |
| ### 2. One of my Multimodel Vision-Language model's capabilities with the LLaVA framework. | |
| ### 3. Demo for annotating random images and 4 second videos provided at Notion (https://shorturl.at/givyC) | |
| ### 4. Ability to integrate a Large Language Model and Vision Encoder | |
| """) | |
| with gr.Row(): | |
| video = gr.Video(label="Upload your video here") | |
| image = gr.Image(type="pil", label="Upload or Drag an Image") | |
| with gr.Row(): | |
| with gr.Column(): | |
| question = gr.Textbox(label="Question", placeholder="Annotate prompt", lines=4.3) | |
| btn = gr.Button("Annotate") | |
| with gr.Column(): | |
| answer = gr.TextArea(label="Answer") | |
| btn.click(gradio_predict, inputs=[image, video, question], outputs=answer) | |
| gr.Examples( | |
| examples=test_examples, | |
| inputs=[video,image, question], | |
| outputs=[answer], | |
| fn=gradio_predict, | |
| cache_examples=True, | |
| ) | |
| app.launch(debug=True) | |