Spaces:
Runtime error
Runtime error
File size: 5,838 Bytes
484aa33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
####################################### IMPORT #################################
import json
import pandas as pd
from PIL import Image
from loguru import logger
import sys
from fastapi import FastAPI, File, status
from fastapi.responses import RedirectResponse
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.exceptions import HTTPException
from io import BytesIO
from app import get_image_from_bytes
from app import detect_sample_model
from app import add_bboxs_on_img
from app import get_bytes_from_image
####################################### logger #################################
logger.remove()
logger.add(
sys.stderr,
colorize=True,
format="<green>{time:HH:mm:ss}</green> | <level>{message}</level>",
level=10,
)
logger.add("log.log", rotation="1 MB", level="DEBUG", compression="zip")
###################### FastAPI Setup #############################
# title
app = FastAPI(
title="Object Detection FastAPI Template",
description="""Obtain object value out of image
and return image and json result""",
version="2023.1.31",
)
# This function is needed if you want to allow client requests
# from specific domains (specified in the origins argument)
# to access resources from the FastAPI server,
# and the client and server are hosted on different domains.
origins = [
"http://localhost",
"http://localhost:8008",
"*"
]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
def save_openapi_json():
'''This function is used to save the OpenAPI documentation
data of the FastAPI application to a JSON file.
The purpose of saving the OpenAPI documentation data is to have
a permanent and offline record of the API specification,
which can be used for documentation purposes or
to generate client libraries. It is not necessarily needed,
but can be helpful in certain scenarios.'''
openapi_data = app.openapi()
# Change "openapi.json" to desired filename
with open("openapi.json", "w") as file:
json.dump(openapi_data, file)
# redirect
@app.get("/", include_in_schema=False)
async def redirect():
return RedirectResponse("/docs")
@app.get('/healthcheck', status_code=status.HTTP_200_OK)
def perform_healthcheck():
'''
It basically sends a GET request to the route & hopes to get a "200"
response code. Failing to return a 200 response code just enables
the GitHub Actions to rollback to the last version the project was
found in a "working condition". It acts as a last line of defense in
case something goes south.
Additionally, it also returns a JSON response in the form of:
{
'healtcheck': 'Everything OK!'
}
'''
return {'healthcheck': 'Everything OK!'}
######################### Support Func #################################
def crop_image_by_predict(image: Image, predict: pd.DataFrame(), crop_class_name: str,) -> Image:
"""Crop an image based on the detection of a certain object in the image.
Args:
image: Image to be cropped.
predict (pd.DataFrame): Dataframe containing the prediction results of object detection model.
crop_class_name (str, optional): The name of the object class to crop the image by. if not provided, function returns the first object found in the image.
Returns:
Image: Cropped image or None
"""
crop_predicts = predict[(predict['name'] == crop_class_name)]
if crop_predicts.empty:
raise HTTPException(status_code=400, detail=f"{crop_class_name} not found in photo")
# if there are several detections, choose the one with more confidence
if len(crop_predicts) > 1:
crop_predicts = crop_predicts.sort_values(by=['confidence'], ascending=False)
crop_bbox = crop_predicts[['xmin', 'ymin', 'xmax','ymax']].iloc[0].values
# crop
img_crop = image.crop(crop_bbox)
return(img_crop)
######################### MAIN Func #################################
@app.post("/img_object_detection_to_json")
def img_object_detection_to_json(file: bytes = File(...)):
"""
Object Detection from an image.
Args:
file (bytes): The image file in bytes format.
Returns:
dict: JSON format containing the Objects Detections.
"""
# Step 1: Initialize the result dictionary with None values
result={'detect_objects': None}
# Step 2: Convert the image file to an image object
input_image = get_image_from_bytes(file)
# Step 3: Predict from model
predict = detect_sample_model(input_image)
# Step 4: Select detect obj return info
# here you can choose what data to send to the result
detect_res = predict[['name', 'confidence']]
objects = detect_res['name'].values
result['detect_objects_names'] = ', '.join(objects)
result['detect_objects'] = json.loads(detect_res.to_json(orient='records'))
# Step 5: Logs and return
logger.info("results: {}", result)
return result
@app.post("/img_object_detection_to_img")
def img_object_detection_to_img(file: bytes = File(...)):
"""
Object Detection from an image plot bbox on image
Args:
file (bytes): The image file in bytes format.
Returns:
Image: Image in bytes with bbox annotations.
"""
# get image from bytes
input_image = get_image_from_bytes(file)
# model predict
predict = detect_sample_model(input_image)
# add bbox on image
final_image = add_bboxs_on_img(image = input_image, predict = predict)
# return image in bytes format
return StreamingResponse(content=get_bytes_from_image(final_image), media_type="image/jpeg")
|