Spaces:
Running
Running
from onnx_modules.V230_OnnxInference import OnnxInferenceSession | |
import numpy as np | |
import torch | |
from scipy.io.wavfile import write | |
from text import cleaned_text_to_sequence, get_bert | |
from text.cleaner import clean_text | |
import utils | |
import commons | |
import uuid | |
from flask import Flask, request, jsonify, render_template_string | |
from flask_cors import CORS | |
import gradio as gr | |
import os | |
from threading import Thread | |
hps = utils.get_hparams_from_file('onnx/BangDreamApi.json') | |
device = 'cpu' | |
BandList = { | |
"PoppinParty":["香澄","有咲","たえ","りみ","沙綾"], | |
"Afterglow":["蘭","モカ","ひまり","巴","つぐみ"], | |
"HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"], | |
"PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"], | |
"Roselia":["友希那","紗夜","リサ","燐子","あこ"], | |
"RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"], | |
"Morfonica":["ましろ","瑠唯","つくし","七深","透子"], | |
"MyGo":["燈","愛音","そよ","立希","楽奈"], | |
"AveMujica":["祥子","睦","海鈴","にゃむ","初華"], | |
"圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"], | |
"凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"], | |
"弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"], | |
"西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"] | |
} | |
Session = OnnxInferenceSession( | |
{ | |
"enc" : "onnx/BangDreamApi/BangDreamApi_enc_p.onnx", | |
"emb_g" : "onnx/BangDreamApi/BangDreamApi_emb.onnx", | |
"dp" : "onnx/BangDreamApi/BangDreamApi_dp.onnx", | |
"sdp" : "onnx/BangDreamApi/BangDreamApi_sdp.onnx", | |
"flow" : "onnx/BangDreamApi/BangDreamApi_flow.onnx", | |
"dec" : "onnx/BangDreamApi/BangDreamApi_dec.onnx" | |
}, | |
Providers = ["CPUExecutionProvider"] | |
) | |
def get_text(text, language_str, hps, device, style_text=None, style_weight=0.7): | |
style_text = None if style_text == "" else style_text | |
norm_text, phone, tone, word2ph = clean_text(text, language_str) | |
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) | |
if True: | |
phone = commons.intersperse(phone, 0) | |
tone = commons.intersperse(tone, 0) | |
language = commons.intersperse(language, 0) | |
for i in range(len(word2ph)): | |
word2ph[i] = word2ph[i] * 2 | |
word2ph[0] += 1 | |
bert_ori = get_bert( | |
norm_text, word2ph, language_str, device, style_text, style_weight | |
) | |
del word2ph | |
assert bert_ori.shape[-1] == len(phone), phone | |
if language_str == "ZH": | |
bert = bert_ori | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "JP": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = bert_ori | |
en_bert = torch.randn(1024, len(phone)) | |
elif language_str == "EN": | |
bert = torch.randn(1024, len(phone)) | |
ja_bert = torch.randn(1024, len(phone)) | |
en_bert = bert_ori | |
else: | |
raise ValueError("language_str should be ZH, JP or EN") | |
assert bert.shape[-1] == len( | |
phone | |
), f"Bert seq len {bert.shape[-1]} != {len(phone)}" | |
phone = torch.LongTensor(phone) | |
tone = torch.LongTensor(tone) | |
language = torch.LongTensor(language) | |
return bert, ja_bert, en_bert, phone, tone, language | |
def infer( | |
text, | |
sid, | |
style_text=None, | |
style_weight=0.7, | |
sdp_ratio=0.5, | |
noise_scale=0.6, | |
noise_scale_w=0.667, | |
length_scale=1, | |
unique_filename = 'temp.wav' | |
): | |
language= 'JP' if is_japanese(text) else 'ZH' | |
bert, ja_bert, en_bert, phones, tone, language = get_text( | |
text, | |
language, | |
hps, | |
device, | |
style_text=style_text, | |
style_weight=style_weight, | |
) | |
with torch.no_grad(): | |
x_tst = phones.unsqueeze(0).to(device).numpy() | |
language = np.zeros_like(x_tst) | |
tone = np.zeros_like(x_tst) | |
bert = bert.to(device).transpose(0, 1).numpy() | |
ja_bert = ja_bert.to(device).transpose(0, 1).numpy() | |
en_bert = en_bert.to(device).transpose(0, 1).numpy() | |
del phones | |
sid = np.array([hps.spk2id[sid]]) | |
audio = Session( | |
x_tst, | |
tone, | |
language, | |
bert, | |
ja_bert, | |
en_bert, | |
sid, | |
seed=114514, | |
seq_noise_scale=noise_scale_w, | |
sdp_noise_scale=noise_scale, | |
length_scale=length_scale, | |
sdp_ratio=sdp_ratio, | |
) | |
del x_tst, tone, language, bert, ja_bert, en_bert, sid | |
write(unique_filename, 44100, audio) | |
return (44100,gr.processing_utils.convert_to_16_bit_wav(audio)) | |
def is_japanese(string): | |
for ch in string: | |
if ord(ch) > 0x3040 and ord(ch) < 0x30FF: | |
return True | |
return False | |
Flaskapp = Flask(__name__) | |
CORS(Flaskapp) | |
def tts(): | |
global last_text, last_model | |
speaker = request.args.get('speaker') | |
sdp_ratio = float(request.args.get('sdp_ratio', 0.2)) | |
noise_scale = float(request.args.get('noise_scale', 0.6)) | |
noise_scale_w = float(request.args.get('noise_scale_w', 0.8)) | |
length_scale = float(request.args.get('length_scale', 1)) | |
style_weight = float(request.args.get('style_weight', 0.7)) | |
style_text = request.args.get('style_text', 'happy') | |
text = request.args.get('text') | |
is_chat = request.args.get('is_chat', 'false').lower() == 'true' | |
#model = request.args.get('model',modelPaths[-1]) | |
if not speaker or not text: | |
return render_template_string(""" | |
<!DOCTYPE html> | |
<html> | |
<head> | |
<title>TTS API Documentation</title> | |
</head> | |
<body> | |
<iframe src="http://127.0.0.1:7860" style="width:100%; height:100vh; border:none;"></iframe> | |
</body> | |
</html> | |
""") | |
''' | |
if model != last_model: | |
unique_filename = loadmodel(model) | |
last_model = model | |
''' | |
if is_chat and text == last_text: | |
# Generate 1 second of silence and return | |
unique_filename = 'blank.wav' | |
silence = np.zeros(44100, dtype=np.int16) | |
write(unique_filename , 44100, silence) | |
else: | |
last_text = text | |
unique_filename = f"temp{uuid.uuid4()}.wav" | |
infer(text, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale,sid = speaker, style_text=style_text, style_weight=style_weight,unique_filename=unique_filename) | |
with open(unique_filename ,'rb') as bit: | |
wav_bytes = bit.read() | |
os.remove(unique_filename) | |
headers = { | |
'Content-Type': 'audio/wav', | |
'Text': unique_filename .encode('utf-8')} | |
return wav_bytes, 200, headers | |
def gradio_interface(): | |
return app.launch(share=False) | |
if __name__ == "__main__": | |
speaker_ids = hps.spk2id | |
speakers = list(speaker_ids.keys()) | |
last_text = "" | |
with gr.Blocks() as app: | |
for band in BandList: | |
with gr.TabItem(band): | |
for name in BandList[band]: | |
with gr.TabItem(name): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown( | |
'<div align="center">' | |
f'<img style="width:auto;height:400px;" src="https://mahiruoshi-bangdream-bert-vits2.hf.space/file/image/{name}.png">' | |
'</div>' | |
) | |
length_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节" | |
) | |
with gr.Accordion(label="参数设定", open=False): | |
sdp_ratio = gr.Slider( | |
minimum=0, maximum=1, value=0.5, step=0.01, label="SDP/DP混合比" | |
) | |
noise_scale = gr.Slider( | |
minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节" | |
) | |
noise_scale_w = gr.Slider( | |
minimum=0.1, maximum=2, value=0.667, step=0.01, label="音素长度" | |
) | |
speaker = gr.Dropdown( | |
choices=speakers, value=name, label="说话人" | |
) | |
''' | |
with gr.Accordion(label="切换模型", open=False): | |
modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value") | |
btnMod = gr.Button("载入模型") | |
statusa = gr.TextArea() | |
btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa]) | |
''' | |
with gr.Column(): | |
text = gr.TextArea( | |
label="输入纯日语或者中文", | |
placeholder="输入纯日语或者中文", | |
value="为什么要演奏春日影!", | |
) | |
style_text = gr.Textbox(label="辅助文本") | |
style_weight = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0.7, | |
step=0.1, | |
label="Weight", | |
info="主文本和辅助文本的bert混合比率,0表示仅主文本,1表示仅辅助文本", | |
) | |
btn = gr.Button("点击生成", variant="primary") | |
audio_output = gr.Audio(label="Output Audio") | |
''' | |
btntran = gr.Button("快速中翻日") | |
translateResult = gr.TextArea("从这复制翻译后的文本") | |
btntran.click(translate, inputs=[text], outputs = [translateResult]) | |
''' | |
btn.click( | |
infer, | |
inputs=[ | |
text, | |
speaker, | |
style_text, | |
style_weight, | |
sdp_ratio, | |
noise_scale, | |
noise_scale_w, | |
length_scale, | |
], | |
outputs=[audio_output], | |
) | |
api_thread = Thread(target=Flaskapp.run, args=("0.0.0.0", 5000)) | |
gradio_thread = Thread(target=gradio_interface) | |
gradio_thread.start() | |
print("推理页面已开启!") | |
api_thread.start() | |
print("api页面已开启!运行在5000端口") | |