Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CLIP Image Embedding Generator
|
| 3 |
+
|
| 4 |
+
A simple Gradio-based application for generating CLIP embeddings from uploaded images.
|
| 5 |
+
Uses OpenAI's CLIP model with proper preprocessing.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 10 |
+
from PIL import Image
|
| 11 |
+
import torch
|
| 12 |
+
import numpy as np
|
| 13 |
+
from typing import Tuple
|
| 14 |
+
import spaces
|
| 15 |
+
|
| 16 |
+
# Load model/processor
|
| 17 |
+
model: CLIPModel = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
| 18 |
+
processor: CLIPProcessor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
| 19 |
+
model.eval()
|
| 20 |
+
|
| 21 |
+
@spaces.GPU
|
| 22 |
+
def get_embedding(image: Image.Image) -> Tuple[str, str]:
|
| 23 |
+
"""
|
| 24 |
+
Generate CLIP embedding for an image.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
image (Image.Image): PIL Image object to process
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
Tuple[str, str]: A tuple containing (embedding_info, embedding_values)
|
| 31 |
+
"""
|
| 32 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
| 33 |
+
|
| 34 |
+
# Use CLIP's built-in preprocessing
|
| 35 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
| 36 |
+
model_device = model.to(device)
|
| 37 |
+
|
| 38 |
+
with torch.no_grad():
|
| 39 |
+
emb: torch.Tensor = model_device.get_image_features(**inputs)
|
| 40 |
+
|
| 41 |
+
# L2 normalize the embeddings
|
| 42 |
+
emb = emb / emb.norm(p=2, dim=-1, keepdim=True)
|
| 43 |
+
|
| 44 |
+
# Convert to numpy for easier handling
|
| 45 |
+
emb_numpy = emb.cpu().numpy().squeeze()
|
| 46 |
+
|
| 47 |
+
# Create formatted output
|
| 48 |
+
embedding_info = f"Embedding Shape: {emb_numpy.shape}\nDevice Used: {device}\nNormalized: Yes (L2)"
|
| 49 |
+
|
| 50 |
+
# Format embedding values (show first 10 and last 10 values for readability)
|
| 51 |
+
if len(emb_numpy) > 20:
|
| 52 |
+
embedding_preview = (
|
| 53 |
+
f"First 10 values: {emb_numpy[:10].tolist()}\n"
|
| 54 |
+
f"...\n"
|
| 55 |
+
f"Last 10 values: {emb_numpy[-10:].tolist()}\n\n"
|
| 56 |
+
f"Full embedding array:\n{emb_numpy.tolist()}"
|
| 57 |
+
)
|
| 58 |
+
else:
|
| 59 |
+
embedding_preview = f"Full embedding array:\n{emb_numpy.tolist()}"
|
| 60 |
+
|
| 61 |
+
return embedding_info, embedding_preview
|
| 62 |
+
|
| 63 |
+
# Create Gradio interface
|
| 64 |
+
demo: gr.Interface = gr.Interface(
|
| 65 |
+
fn=get_embedding,
|
| 66 |
+
inputs=gr.Image(type="pil", label="Upload Image"),
|
| 67 |
+
outputs=[
|
| 68 |
+
gr.Textbox(label="Embedding Info", lines=3),
|
| 69 |
+
gr.Textbox(label="Embedding Values", lines=20, max_lines=30)
|
| 70 |
+
],
|
| 71 |
+
allow_flagging="never",
|
| 72 |
+
title="CLIP Image Embedding Generator",
|
| 73 |
+
description="Upload an image to generate its CLIP embedding vector. The embedding is L2-normalized and ready for similarity computations.",
|
| 74 |
+
theme=gr.themes.Soft()
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if __name__ == "__main__":
|
| 78 |
+
demo.launch(mcp_server=True)
|