Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Commit 
							
							·
						
						81b1a0e
	
1
								Parent(s):
							
							cbc329e
								
Initialization on my BiRefNet online demo.
Browse files- .gitattributes +1 -0
 - .gitignore +5 -0
 - app.py +85 -0
 - backbones/build_backbone.py +44 -0
 - backbones/pvt_v2.py +435 -0
 - backbones/swin_v1.py +652 -0
 - baseline.py +318 -0
 - birefnet_dis.pth +3 -0
 - config.py +109 -0
 - dataset.py +91 -0
 - examples/DIS-TE1-firstOne.jpg +3 -0
 - examples/DIS-TE2-firstOne.jpg +3 -0
 - examples/DIS-TE3-firstOne.jpg +3 -0
 - examples/DIS-TE4-firstOne.jpg +3 -0
 - examples/DIS-VD-firstOne.jpg +3 -0
 - modules/aspp.py +162 -0
 - modules/attentions.py +93 -0
 - modules/decoder_blocks.py +101 -0
 - modules/deform_conv.py +66 -0
 - modules/ing.py +29 -0
 - modules/lateral_blocks.py +21 -0
 - modules/mlp.py +118 -0
 - modules/utils.py +54 -0
 - preproc.py +85 -0
 - refinement/refiner.py +253 -0
 - refinement/stem_layer.py +45 -0
 - requirements.txt +11 -0
 
    	
        .gitattributes
    CHANGED
    
    | 
         @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text 
     | 
|
| 33 | 
         
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 
         | 
| 
         | 
|
| 33 | 
         
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         
     | 
| 34 | 
         
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         
     | 
| 35 | 
         
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         
     | 
| 36 | 
         
            +
            *.jpg filter=lfs diff=lfs merge=lfs -text
         
     | 
    	
        .gitignore
    ADDED
    
    | 
         @@ -0,0 +1,5 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            flagged/
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            __pycache__
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            .DS_Store
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,85 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            from glob import glob
         
     | 
| 3 | 
         
            +
            import cv2
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from PIL import Image
         
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
            from torchvision import transforms
         
     | 
| 8 | 
         
            +
            import gradio as gr
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from models.baseline import BiRefNet
         
     | 
| 11 | 
         
            +
            from config import Config
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            config = Config()
         
     | 
| 15 | 
         
            +
            device = config.device
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            class ImagePreprocessor():
         
     | 
| 19 | 
         
            +
                def __init__(self) -> None:
         
     | 
| 20 | 
         
            +
                    self.transform_image = transforms.Compose([
         
     | 
| 21 | 
         
            +
                        transforms.Resize((1024, 1024)),
         
     | 
| 22 | 
         
            +
                        transforms.ToTensor(),
         
     | 
| 23 | 
         
            +
                        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
         
     | 
| 24 | 
         
            +
                    ])
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                def proc(self, image):
         
     | 
| 27 | 
         
            +
                    image = self.transform_image(image)
         
     | 
| 28 | 
         
            +
                    return image
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            model = BiRefNet().to(device)
         
     | 
| 32 | 
         
            +
            state_dict = './birefnet_dis.pth'
         
     | 
| 33 | 
         
            +
            if os.path.exists(state_dict):
         
     | 
| 34 | 
         
            +
                birefnet_dict = torch.load(state_dict, map_location=device)
         
     | 
| 35 | 
         
            +
                unwanted_prefix = '_orig_mod.'
         
     | 
| 36 | 
         
            +
                for k, v in list(birefnet_dict.items()):
         
     | 
| 37 | 
         
            +
                    if k.startswith(unwanted_prefix):
         
     | 
| 38 | 
         
            +
                        birefnet_dict[k[len(unwanted_prefix):]] = birefnet_dict.pop(k)
         
     | 
| 39 | 
         
            +
                model.load_state_dict(birefnet_dict)
         
     | 
| 40 | 
         
            +
            model.eval()
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            # def predict(image_1, image_2):
         
     | 
| 44 | 
         
            +
            #     images = [image_1, image_2]
         
     | 
| 45 | 
         
            +
            def predict(image):
         
     | 
| 46 | 
         
            +
                images = [image]
         
     | 
| 47 | 
         
            +
                image_shapes = [image.shape[:2] for image in images]
         
     | 
| 48 | 
         
            +
                images = [Image.fromarray(image) for image in images]
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                images_proc = []
         
     | 
| 51 | 
         
            +
                image_preprocessor = ImagePreprocessor()
         
     | 
| 52 | 
         
            +
                for image in images:
         
     | 
| 53 | 
         
            +
                    images_proc.append(image_preprocessor.proc(image))
         
     | 
| 54 | 
         
            +
                images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc])
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                with torch.no_grad():
         
     | 
| 57 | 
         
            +
                    scaled_preds_tensor = model(images_proc.to(device))[-1].sigmoid()   # BiRefNet needs an sigmoid activation outside the forward.
         
     | 
| 58 | 
         
            +
                preds = []
         
     | 
| 59 | 
         
            +
                for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor):
         
     | 
| 60 | 
         
            +
                    if device == 'cuda':
         
     | 
| 61 | 
         
            +
                        pred_tensor = pred_tensor.cpu()
         
     | 
| 62 | 
         
            +
                    preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy())
         
     | 
| 63 | 
         
            +
                image_preds = []
         
     | 
| 64 | 
         
            +
                for image, pred in zip(images, preds):
         
     | 
| 65 | 
         
            +
                    image_preds.append(
         
     | 
| 66 | 
         
            +
                        cv2.cvtColor((pred*255).astype(np.uint8), cv2.COLOR_GRAY2RGB)
         
     | 
| 67 | 
         
            +
                    )
         
     | 
| 68 | 
         
            +
                return image_preds[:] if len(images) > 1 else image_preds[0]
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            examples = [[_] for _ in glob('examples/*')][:]
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            N = 1
         
     | 
| 74 | 
         
            +
            ipt = [gr.Image() for _ in range(N)]
         
     | 
| 75 | 
         
            +
            opt = [gr.Image() for _ in range(N)]
         
     | 
| 76 | 
         
            +
            demo = gr.Interface(
         
     | 
| 77 | 
         
            +
                fn=predict,
         
     | 
| 78 | 
         
            +
                inputs=ipt,
         
     | 
| 79 | 
         
            +
                outputs=opt,
         
     | 
| 80 | 
         
            +
                examples=examples,
         
     | 
| 81 | 
         
            +
                title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`',
         
     | 
| 82 | 
         
            +
                description=('Upload a picture, our model will give you the binary maps of the highly accurate segmentation of the salient objects in it. :)'
         
     | 
| 83 | 
         
            +
                             '\n')
         
     | 
| 84 | 
         
            +
            )
         
     | 
| 85 | 
         
            +
            demo.launch(debug=True)
         
     | 
    	
        backbones/build_backbone.py
    ADDED
    
    | 
         @@ -0,0 +1,44 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from collections import OrderedDict
         
     | 
| 4 | 
         
            +
            from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
         
     | 
| 5 | 
         
            +
            from models.backbones.pvt_v2 import pvt_v2_b2, pvt_v2_b5
         
     | 
| 6 | 
         
            +
            from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
         
     | 
| 7 | 
         
            +
            from config import Config
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            config = Config()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def build_backbone(bb_name, pretrained=True, params_settings=''):
         
     | 
| 13 | 
         
            +
                if bb_name == 'vgg16':
         
     | 
| 14 | 
         
            +
                    bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
         
     | 
| 15 | 
         
            +
                    bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
         
     | 
| 16 | 
         
            +
                elif bb_name == 'vgg16bn':
         
     | 
| 17 | 
         
            +
                    bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
         
     | 
| 18 | 
         
            +
                    bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
         
     | 
| 19 | 
         
            +
                elif bb_name == 'resnet50':
         
     | 
| 20 | 
         
            +
                    bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
         
     | 
| 21 | 
         
            +
                    bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
         
     | 
| 22 | 
         
            +
                else:
         
     | 
| 23 | 
         
            +
                    bb = eval('{}({})'.format(bb_name, params_settings))
         
     | 
| 24 | 
         
            +
                    if pretrained:
         
     | 
| 25 | 
         
            +
                        bb = load_weights(bb, bb_name)
         
     | 
| 26 | 
         
            +
                return bb
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            def load_weights(model, model_name):
         
     | 
| 29 | 
         
            +
                save_model = torch.load(config.weights[model_name])
         
     | 
| 30 | 
         
            +
                model_dict = model.state_dict()
         
     | 
| 31 | 
         
            +
                state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
         
     | 
| 32 | 
         
            +
                # to ignore the weights with mismatched size when I modify the backbone itself.
         
     | 
| 33 | 
         
            +
                if not state_dict:
         
     | 
| 34 | 
         
            +
                    save_model_keys = list(save_model.keys())
         
     | 
| 35 | 
         
            +
                    sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
         
     | 
| 36 | 
         
            +
                    state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
         
     | 
| 37 | 
         
            +
                    if not state_dict or not sub_item:
         
     | 
| 38 | 
         
            +
                        print('Weights are not successully loaded. Check the state dict of weights file.')
         
     | 
| 39 | 
         
            +
                        return None
         
     | 
| 40 | 
         
            +
                    else:
         
     | 
| 41 | 
         
            +
                        print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
         
     | 
| 42 | 
         
            +
                model_dict.update(state_dict)
         
     | 
| 43 | 
         
            +
                model.load_state_dict(model_dict)
         
     | 
| 44 | 
         
            +
                return model
         
     | 
    	
        backbones/pvt_v2.py
    ADDED
    
    | 
         @@ -0,0 +1,435 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from functools import partial
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from timm.models.layers import DropPath, to_2tuple, trunc_normal_
         
     | 
| 6 | 
         
            +
            from timm.models.registry import register_model
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import math
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from config import Config
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            config = Config()
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            class Mlp(nn.Module):
         
     | 
| 15 | 
         
            +
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         
     | 
| 16 | 
         
            +
                    super().__init__()
         
     | 
| 17 | 
         
            +
                    out_features = out_features or in_features
         
     | 
| 18 | 
         
            +
                    hidden_features = hidden_features or in_features
         
     | 
| 19 | 
         
            +
                    self.fc1 = nn.Linear(in_features, hidden_features)
         
     | 
| 20 | 
         
            +
                    self.dwconv = DWConv(hidden_features)
         
     | 
| 21 | 
         
            +
                    self.act = act_layer()
         
     | 
| 22 | 
         
            +
                    self.fc2 = nn.Linear(hidden_features, out_features)
         
     | 
| 23 | 
         
            +
                    self.drop = nn.Dropout(drop)
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 28 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 29 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 30 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 31 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 32 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 33 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 34 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 35 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 36 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 37 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 38 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 39 | 
         
            +
                        if m.bias is not None:
         
     | 
| 40 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 43 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 44 | 
         
            +
                    x = self.dwconv(x, H, W)
         
     | 
| 45 | 
         
            +
                    x = self.act(x)
         
     | 
| 46 | 
         
            +
                    x = self.drop(x)
         
     | 
| 47 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 48 | 
         
            +
                    x = self.drop(x)
         
     | 
| 49 | 
         
            +
                    return x
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            class Attention(nn.Module):
         
     | 
| 53 | 
         
            +
                def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
         
     | 
| 54 | 
         
            +
                    super().__init__()
         
     | 
| 55 | 
         
            +
                    assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    self.dim = dim
         
     | 
| 58 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 59 | 
         
            +
                    head_dim = dim // num_heads
         
     | 
| 60 | 
         
            +
                    self.scale = qk_scale or head_dim ** -0.5
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    self.q = nn.Linear(dim, dim, bias=qkv_bias)
         
     | 
| 63 | 
         
            +
                    self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
         
     | 
| 64 | 
         
            +
                    self.attn_drop_prob = attn_drop
         
     | 
| 65 | 
         
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         
     | 
| 66 | 
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 67 | 
         
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    self.sr_ratio = sr_ratio
         
     | 
| 70 | 
         
            +
                    if sr_ratio > 1:
         
     | 
| 71 | 
         
            +
                        self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
         
     | 
| 72 | 
         
            +
                        self.norm = nn.LayerNorm(dim)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 77 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 78 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 79 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 80 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 81 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 82 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 83 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 84 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 85 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 86 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 87 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 88 | 
         
            +
                        if m.bias is not None:
         
     | 
| 89 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 92 | 
         
            +
                    B, N, C = x.shape
         
     | 
| 93 | 
         
            +
                    q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    if self.sr_ratio > 1:
         
     | 
| 96 | 
         
            +
                        x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
         
     | 
| 97 | 
         
            +
                        x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
         
     | 
| 98 | 
         
            +
                        x_ = self.norm(x_)
         
     | 
| 99 | 
         
            +
                        kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 100 | 
         
            +
                    else:
         
     | 
| 101 | 
         
            +
                        kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 102 | 
         
            +
                    k, v = kv[0], kv[1]
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    if config.SDPA_enabled:
         
     | 
| 105 | 
         
            +
                        x = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 106 | 
         
            +
                            q, k, v,
         
     | 
| 107 | 
         
            +
                            attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
         
     | 
| 108 | 
         
            +
                        ).transpose(1, 2).reshape(B, N, C)
         
     | 
| 109 | 
         
            +
                    else:
         
     | 
| 110 | 
         
            +
                        attn = (q @ k.transpose(-2, -1)) * self.scale
         
     | 
| 111 | 
         
            +
                        attn = attn.softmax(dim=-1)
         
     | 
| 112 | 
         
            +
                        attn = self.attn_drop(attn)
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         
     | 
| 115 | 
         
            +
                    x = self.proj(x)
         
     | 
| 116 | 
         
            +
                    x = self.proj_drop(x)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    return x
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
            class Block(nn.Module):
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
         
     | 
| 124 | 
         
            +
                             drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
         
     | 
| 125 | 
         
            +
                    super().__init__()
         
     | 
| 126 | 
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 127 | 
         
            +
                    self.attn = Attention(
         
     | 
| 128 | 
         
            +
                        dim,
         
     | 
| 129 | 
         
            +
                        num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 130 | 
         
            +
                        attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
         
     | 
| 131 | 
         
            +
                    # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
         
     | 
| 132 | 
         
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         
     | 
| 133 | 
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 134 | 
         
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 135 | 
         
            +
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 140 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 141 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 142 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 143 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 144 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 145 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 146 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 147 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 148 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 149 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 150 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 151 | 
         
            +
                        if m.bias is not None:
         
     | 
| 152 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 155 | 
         
            +
                    x = x + self.drop_path(self.attn(self.norm1(x), H, W))
         
     | 
| 156 | 
         
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    return x
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            class OverlapPatchEmbed(nn.Module):
         
     | 
| 162 | 
         
            +
                """ Image to Patch Embedding
         
     | 
| 163 | 
         
            +
                """
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
         
     | 
| 166 | 
         
            +
                    super().__init__()
         
     | 
| 167 | 
         
            +
                    img_size = to_2tuple(img_size)
         
     | 
| 168 | 
         
            +
                    patch_size = to_2tuple(patch_size)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    self.img_size = img_size
         
     | 
| 171 | 
         
            +
                    self.patch_size = patch_size
         
     | 
| 172 | 
         
            +
                    self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
         
     | 
| 173 | 
         
            +
                    self.num_patches = self.H * self.W
         
     | 
| 174 | 
         
            +
                    self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
         
     | 
| 175 | 
         
            +
                                          padding=(patch_size[0] // 2, patch_size[1] // 2))
         
     | 
| 176 | 
         
            +
                    self.norm = nn.LayerNorm(embed_dim)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 181 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 182 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 183 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 184 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 185 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 186 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 187 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 188 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 189 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 190 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 191 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 192 | 
         
            +
                        if m.bias is not None:
         
     | 
| 193 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                def forward(self, x):
         
     | 
| 196 | 
         
            +
                    x = self.proj(x)
         
     | 
| 197 | 
         
            +
                    _, _, H, W = x.shape
         
     | 
| 198 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 199 | 
         
            +
                    x = self.norm(x)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    return x, H, W
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
            class PyramidVisionTransformerImpr(nn.Module):
         
     | 
| 205 | 
         
            +
                def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
         
     | 
| 206 | 
         
            +
                             num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
         
     | 
| 207 | 
         
            +
                             attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
         
     | 
| 208 | 
         
            +
                             depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
         
     | 
| 209 | 
         
            +
                    super().__init__()
         
     | 
| 210 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 211 | 
         
            +
                    self.depths = depths
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    # patch_embed
         
     | 
| 214 | 
         
            +
                    self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
         
     | 
| 215 | 
         
            +
                                                          embed_dim=embed_dims[0])
         
     | 
| 216 | 
         
            +
                    self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
         
     | 
| 217 | 
         
            +
                                                          embed_dim=embed_dims[1])
         
     | 
| 218 | 
         
            +
                    self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
         
     | 
| 219 | 
         
            +
                                                          embed_dim=embed_dims[2])
         
     | 
| 220 | 
         
            +
                    self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
         
     | 
| 221 | 
         
            +
                                                          embed_dim=embed_dims[3])
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                    # transformer encoder
         
     | 
| 224 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
         
     | 
| 225 | 
         
            +
                    cur = 0
         
     | 
| 226 | 
         
            +
                    self.block1 = nn.ModuleList([Block(
         
     | 
| 227 | 
         
            +
                        dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 228 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 229 | 
         
            +
                        sr_ratio=sr_ratios[0])
         
     | 
| 230 | 
         
            +
                        for i in range(depths[0])])
         
     | 
| 231 | 
         
            +
                    self.norm1 = norm_layer(embed_dims[0])
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                    cur += depths[0]
         
     | 
| 234 | 
         
            +
                    self.block2 = nn.ModuleList([Block(
         
     | 
| 235 | 
         
            +
                        dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 236 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 237 | 
         
            +
                        sr_ratio=sr_ratios[1])
         
     | 
| 238 | 
         
            +
                        for i in range(depths[1])])
         
     | 
| 239 | 
         
            +
                    self.norm2 = norm_layer(embed_dims[1])
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    cur += depths[1]
         
     | 
| 242 | 
         
            +
                    self.block3 = nn.ModuleList([Block(
         
     | 
| 243 | 
         
            +
                        dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 244 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 245 | 
         
            +
                        sr_ratio=sr_ratios[2])
         
     | 
| 246 | 
         
            +
                        for i in range(depths[2])])
         
     | 
| 247 | 
         
            +
                    self.norm3 = norm_layer(embed_dims[2])
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    cur += depths[2]
         
     | 
| 250 | 
         
            +
                    self.block4 = nn.ModuleList([Block(
         
     | 
| 251 | 
         
            +
                        dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 252 | 
         
            +
                        drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
         
     | 
| 253 | 
         
            +
                        sr_ratio=sr_ratios[3])
         
     | 
| 254 | 
         
            +
                        for i in range(depths[3])])
         
     | 
| 255 | 
         
            +
                    self.norm4 = norm_layer(embed_dims[3])
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    # classification head
         
     | 
| 258 | 
         
            +
                    # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 263 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 264 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 265 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 266 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 267 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 268 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 269 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 270 | 
         
            +
                    elif isinstance(m, nn.Conv2d):
         
     | 
| 271 | 
         
            +
                        fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
         
     | 
| 272 | 
         
            +
                        fan_out //= m.groups
         
     | 
| 273 | 
         
            +
                        m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
         
     | 
| 274 | 
         
            +
                        if m.bias is not None:
         
     | 
| 275 | 
         
            +
                            m.bias.data.zero_()
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                def init_weights(self, pretrained=None):
         
     | 
| 278 | 
         
            +
                    if isinstance(pretrained, str):
         
     | 
| 279 | 
         
            +
                        logger = 1
         
     | 
| 280 | 
         
            +
                        #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                def reset_drop_path(self, drop_path_rate):
         
     | 
| 283 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
         
     | 
| 284 | 
         
            +
                    cur = 0
         
     | 
| 285 | 
         
            +
                    for i in range(self.depths[0]):
         
     | 
| 286 | 
         
            +
                        self.block1[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                    cur += self.depths[0]
         
     | 
| 289 | 
         
            +
                    for i in range(self.depths[1]):
         
     | 
| 290 | 
         
            +
                        self.block2[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                    cur += self.depths[1]
         
     | 
| 293 | 
         
            +
                    for i in range(self.depths[2]):
         
     | 
| 294 | 
         
            +
                        self.block3[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                    cur += self.depths[2]
         
     | 
| 297 | 
         
            +
                    for i in range(self.depths[3]):
         
     | 
| 298 | 
         
            +
                        self.block4[i].drop_path.drop_prob = dpr[cur + i]
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                def freeze_patch_emb(self):
         
     | 
| 301 | 
         
            +
                    self.patch_embed1.requires_grad = False
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                @torch.jit.ignore
         
     | 
| 304 | 
         
            +
                def no_weight_decay(self):
         
     | 
| 305 | 
         
            +
                    return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                def get_classifier(self):
         
     | 
| 308 | 
         
            +
                    return self.head
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                def reset_classifier(self, num_classes, global_pool=''):
         
     | 
| 311 | 
         
            +
                    self.num_classes = num_classes
         
     | 
| 312 | 
         
            +
                    self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                def forward_features(self, x):
         
     | 
| 315 | 
         
            +
                    B = x.shape[0]
         
     | 
| 316 | 
         
            +
                    outs = []
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                    # stage 1
         
     | 
| 319 | 
         
            +
                    x, H, W = self.patch_embed1(x)
         
     | 
| 320 | 
         
            +
                    for i, blk in enumerate(self.block1):
         
     | 
| 321 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 322 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 323 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 324 | 
         
            +
                    outs.append(x)
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                    # stage 2
         
     | 
| 327 | 
         
            +
                    x, H, W = self.patch_embed2(x)
         
     | 
| 328 | 
         
            +
                    for i, blk in enumerate(self.block2):
         
     | 
| 329 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 330 | 
         
            +
                    x = self.norm2(x)
         
     | 
| 331 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 332 | 
         
            +
                    outs.append(x)
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                    # stage 3
         
     | 
| 335 | 
         
            +
                    x, H, W = self.patch_embed3(x)
         
     | 
| 336 | 
         
            +
                    for i, blk in enumerate(self.block3):
         
     | 
| 337 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 338 | 
         
            +
                    x = self.norm3(x)
         
     | 
| 339 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 340 | 
         
            +
                    outs.append(x)
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                    # stage 4
         
     | 
| 343 | 
         
            +
                    x, H, W = self.patch_embed4(x)
         
     | 
| 344 | 
         
            +
                    for i, blk in enumerate(self.block4):
         
     | 
| 345 | 
         
            +
                        x = blk(x, H, W)
         
     | 
| 346 | 
         
            +
                    x = self.norm4(x)
         
     | 
| 347 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 348 | 
         
            +
                    outs.append(x)
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    return outs
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                    # return x.mean(dim=1)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                def forward(self, x):
         
     | 
| 355 | 
         
            +
                    x = self.forward_features(x)
         
     | 
| 356 | 
         
            +
                    # x = self.head(x)
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    return x
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
            class DWConv(nn.Module):
         
     | 
| 362 | 
         
            +
                def __init__(self, dim=768):
         
     | 
| 363 | 
         
            +
                    super(DWConv, self).__init__()
         
     | 
| 364 | 
         
            +
                    self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 367 | 
         
            +
                    B, N, C = x.shape
         
     | 
| 368 | 
         
            +
                    x = x.transpose(1, 2).view(B, C, H, W).contiguous()
         
     | 
| 369 | 
         
            +
                    x = self.dwconv(x)
         
     | 
| 370 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    return x
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
            def _conv_filter(state_dict, patch_size=16):
         
     | 
| 376 | 
         
            +
                """ convert patch embedding weight from manual patchify + linear proj to conv"""
         
     | 
| 377 | 
         
            +
                out_dict = {}
         
     | 
| 378 | 
         
            +
                for k, v in state_dict.items():
         
     | 
| 379 | 
         
            +
                    if 'patch_embed.proj.weight' in k:
         
     | 
| 380 | 
         
            +
                        v = v.reshape((v.shape[0], 3, patch_size, patch_size))
         
     | 
| 381 | 
         
            +
                    out_dict[k] = v
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                return out_dict
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
            ## @register_model
         
     | 
| 387 | 
         
            +
            class pvt_v2_b0(PyramidVisionTransformerImpr):
         
     | 
| 388 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 389 | 
         
            +
                    super(pvt_v2_b0, self).__init__(
         
     | 
| 390 | 
         
            +
                        patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 391 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
         
     | 
| 392 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
            ## @register_model
         
     | 
| 397 | 
         
            +
            class pvt_v2_b1(PyramidVisionTransformerImpr):
         
     | 
| 398 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 399 | 
         
            +
                    super(pvt_v2_b1, self).__init__(
         
     | 
| 400 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 401 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
         
     | 
| 402 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
            ## @register_model
         
     | 
| 405 | 
         
            +
            class pvt_v2_b2(PyramidVisionTransformerImpr):
         
     | 
| 406 | 
         
            +
                def __init__(self, in_channels=3, **kwargs):
         
     | 
| 407 | 
         
            +
                    super(pvt_v2_b2, self).__init__(
         
     | 
| 408 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 409 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 410 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
            ## @register_model
         
     | 
| 413 | 
         
            +
            class pvt_v2_b3(PyramidVisionTransformerImpr):
         
     | 
| 414 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 415 | 
         
            +
                    super(pvt_v2_b3, self).__init__(
         
     | 
| 416 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 417 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 418 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
            ## @register_model
         
     | 
| 421 | 
         
            +
            class pvt_v2_b4(PyramidVisionTransformerImpr):
         
     | 
| 422 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 423 | 
         
            +
                    super(pvt_v2_b4, self).__init__(
         
     | 
| 424 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
         
     | 
| 425 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 426 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
            ## @register_model
         
     | 
| 430 | 
         
            +
            class pvt_v2_b5(PyramidVisionTransformerImpr):
         
     | 
| 431 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 432 | 
         
            +
                    super(pvt_v2_b5, self).__init__(
         
     | 
| 433 | 
         
            +
                        patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
         
     | 
| 434 | 
         
            +
                        qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
         
     | 
| 435 | 
         
            +
                        drop_rate=0.0, drop_path_rate=0.1)
         
     | 
    	
        backbones/swin_v1.py
    ADDED
    
    | 
         @@ -0,0 +1,652 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # --------------------------------------------------------
         
     | 
| 2 | 
         
            +
            # Swin Transformer
         
     | 
| 3 | 
         
            +
            # Copyright (c) 2021 Microsoft
         
     | 
| 4 | 
         
            +
            # Licensed under The MIT License [see LICENSE for details]
         
     | 
| 5 | 
         
            +
            # Written by Ze Liu, Yutong Lin, Yixuan Wei
         
     | 
| 6 | 
         
            +
            # --------------------------------------------------------
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import torch
         
     | 
| 9 | 
         
            +
            import torch.nn as nn
         
     | 
| 10 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 11 | 
         
            +
            import torch.utils.checkpoint as checkpoint
         
     | 
| 12 | 
         
            +
            import numpy as np
         
     | 
| 13 | 
         
            +
            from timm.models.layers import DropPath, to_2tuple, trunc_normal_
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            from config import Config
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            config = Config()
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class Mlp(nn.Module):
         
     | 
| 21 | 
         
            +
                """ Multilayer perceptron."""
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         
     | 
| 24 | 
         
            +
                    super().__init__()
         
     | 
| 25 | 
         
            +
                    out_features = out_features or in_features
         
     | 
| 26 | 
         
            +
                    hidden_features = hidden_features or in_features
         
     | 
| 27 | 
         
            +
                    self.fc1 = nn.Linear(in_features, hidden_features)
         
     | 
| 28 | 
         
            +
                    self.act = act_layer()
         
     | 
| 29 | 
         
            +
                    self.fc2 = nn.Linear(hidden_features, out_features)
         
     | 
| 30 | 
         
            +
                    self.drop = nn.Dropout(drop)
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                def forward(self, x):
         
     | 
| 33 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 34 | 
         
            +
                    x = self.act(x)
         
     | 
| 35 | 
         
            +
                    x = self.drop(x)
         
     | 
| 36 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 37 | 
         
            +
                    x = self.drop(x)
         
     | 
| 38 | 
         
            +
                    return x
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def window_partition(x, window_size):
         
     | 
| 42 | 
         
            +
                """
         
     | 
| 43 | 
         
            +
                Args:
         
     | 
| 44 | 
         
            +
                    x: (B, H, W, C)
         
     | 
| 45 | 
         
            +
                    window_size (int): window size
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                Returns:
         
     | 
| 48 | 
         
            +
                    windows: (num_windows*B, window_size, window_size, C)
         
     | 
| 49 | 
         
            +
                """
         
     | 
| 50 | 
         
            +
                B, H, W, C = x.shape
         
     | 
| 51 | 
         
            +
                x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
         
     | 
| 52 | 
         
            +
                windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
         
     | 
| 53 | 
         
            +
                return windows
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def window_reverse(windows, window_size, H, W):
         
     | 
| 57 | 
         
            +
                """
         
     | 
| 58 | 
         
            +
                Args:
         
     | 
| 59 | 
         
            +
                    windows: (num_windows*B, window_size, window_size, C)
         
     | 
| 60 | 
         
            +
                    window_size (int): Window size
         
     | 
| 61 | 
         
            +
                    H (int): Height of image
         
     | 
| 62 | 
         
            +
                    W (int): Width of image
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                Returns:
         
     | 
| 65 | 
         
            +
                    x: (B, H, W, C)
         
     | 
| 66 | 
         
            +
                """
         
     | 
| 67 | 
         
            +
                B = int(windows.shape[0] / (H * W / window_size / window_size))
         
     | 
| 68 | 
         
            +
                x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
         
     | 
| 69 | 
         
            +
                x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
         
     | 
| 70 | 
         
            +
                return x
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            class WindowAttention(nn.Module):
         
     | 
| 74 | 
         
            +
                """ Window based multi-head self attention (W-MSA) module with relative position bias.
         
     | 
| 75 | 
         
            +
                It supports both of shifted and non-shifted window.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                Args:
         
     | 
| 78 | 
         
            +
                    dim (int): Number of input channels.
         
     | 
| 79 | 
         
            +
                    window_size (tuple[int]): The height and width of the window.
         
     | 
| 80 | 
         
            +
                    num_heads (int): Number of attention heads.
         
     | 
| 81 | 
         
            +
                    qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 82 | 
         
            +
                    qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
         
     | 
| 83 | 
         
            +
                    attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
         
     | 
| 84 | 
         
            +
                    proj_drop (float, optional): Dropout ratio of output. Default: 0.0
         
     | 
| 85 | 
         
            +
                """
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    super().__init__()
         
     | 
| 90 | 
         
            +
                    self.dim = dim
         
     | 
| 91 | 
         
            +
                    self.window_size = window_size  # Wh, Ww
         
     | 
| 92 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 93 | 
         
            +
                    head_dim = dim // num_heads
         
     | 
| 94 | 
         
            +
                    self.scale = qk_scale or head_dim ** -0.5
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    # define a parameter table of relative position bias
         
     | 
| 97 | 
         
            +
                    self.relative_position_bias_table = nn.Parameter(
         
     | 
| 98 | 
         
            +
                        torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads))  # 2*Wh-1 * 2*Ww-1, nH
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                    # get pair-wise relative position index for each token inside the window
         
     | 
| 101 | 
         
            +
                    coords_h = torch.arange(self.window_size[0])
         
     | 
| 102 | 
         
            +
                    coords_w = torch.arange(self.window_size[1])
         
     | 
| 103 | 
         
            +
                    coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij'))  # 2, Wh, Ww
         
     | 
| 104 | 
         
            +
                    coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
         
     | 
| 105 | 
         
            +
                    relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
         
     | 
| 106 | 
         
            +
                    relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
         
     | 
| 107 | 
         
            +
                    relative_coords[:, :, 0] += self.window_size[0] - 1  # shift to start from 0
         
     | 
| 108 | 
         
            +
                    relative_coords[:, :, 1] += self.window_size[1] - 1
         
     | 
| 109 | 
         
            +
                    relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
         
     | 
| 110 | 
         
            +
                    relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
         
     | 
| 111 | 
         
            +
                    self.register_buffer("relative_position_index", relative_position_index)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         
     | 
| 114 | 
         
            +
                    self.attn_drop_prob = attn_drop
         
     | 
| 115 | 
         
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         
     | 
| 116 | 
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 117 | 
         
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    trunc_normal_(self.relative_position_bias_table, std=.02)
         
     | 
| 120 | 
         
            +
                    self.softmax = nn.Softmax(dim=-1)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                def forward(self, x, mask=None):
         
     | 
| 123 | 
         
            +
                    """ Forward function.
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    Args:
         
     | 
| 126 | 
         
            +
                        x: input features with shape of (num_windows*B, N, C)
         
     | 
| 127 | 
         
            +
                        mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
         
     | 
| 128 | 
         
            +
                    """
         
     | 
| 129 | 
         
            +
                    B_, N, C = x.shape
         
     | 
| 130 | 
         
            +
                    qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 131 | 
         
            +
                    q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    q = q * self.scale
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                    if config.SDPA_enabled:
         
     | 
| 136 | 
         
            +
                        x = torch.nn.functional.scaled_dot_product_attention(
         
     | 
| 137 | 
         
            +
                            q, k, v,
         
     | 
| 138 | 
         
            +
                            attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
         
     | 
| 139 | 
         
            +
                        ).transpose(1, 2).reshape(B_, N, C)
         
     | 
| 140 | 
         
            +
                    else:
         
     | 
| 141 | 
         
            +
                        attn = (q @ k.transpose(-2, -1))
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                        relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
         
     | 
| 144 | 
         
            +
                            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)  # Wh*Ww,Wh*Ww,nH
         
     | 
| 145 | 
         
            +
                        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
         
     | 
| 146 | 
         
            +
                        attn = attn + relative_position_bias.unsqueeze(0)
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                        if mask is not None:
         
     | 
| 149 | 
         
            +
                            nW = mask.shape[0]
         
     | 
| 150 | 
         
            +
                            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
         
     | 
| 151 | 
         
            +
                            attn = attn.view(-1, self.num_heads, N, N)
         
     | 
| 152 | 
         
            +
                            attn = self.softmax(attn)
         
     | 
| 153 | 
         
            +
                        else:
         
     | 
| 154 | 
         
            +
                            attn = self.softmax(attn)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                        attn = self.attn_drop(attn)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
         
     | 
| 159 | 
         
            +
                    x = self.proj(x)
         
     | 
| 160 | 
         
            +
                    x = self.proj_drop(x)
         
     | 
| 161 | 
         
            +
                    return x
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
            class SwinTransformerBlock(nn.Module):
         
     | 
| 165 | 
         
            +
                """ Swin Transformer Block.
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                Args:
         
     | 
| 168 | 
         
            +
                    dim (int): Number of input channels.
         
     | 
| 169 | 
         
            +
                    num_heads (int): Number of attention heads.
         
     | 
| 170 | 
         
            +
                    window_size (int): Window size.
         
     | 
| 171 | 
         
            +
                    shift_size (int): Shift size for SW-MSA.
         
     | 
| 172 | 
         
            +
                    mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
         
     | 
| 173 | 
         
            +
                    qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 174 | 
         
            +
                    qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
         
     | 
| 175 | 
         
            +
                    drop (float, optional): Dropout rate. Default: 0.0
         
     | 
| 176 | 
         
            +
                    attn_drop (float, optional): Attention dropout rate. Default: 0.0
         
     | 
| 177 | 
         
            +
                    drop_path (float, optional): Stochastic depth rate. Default: 0.0
         
     | 
| 178 | 
         
            +
                    act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
         
     | 
| 179 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
         
     | 
| 180 | 
         
            +
                """
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                def __init__(self, dim, num_heads, window_size=7, shift_size=0,
         
     | 
| 183 | 
         
            +
                             mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
         
     | 
| 184 | 
         
            +
                             act_layer=nn.GELU, norm_layer=nn.LayerNorm):
         
     | 
| 185 | 
         
            +
                    super().__init__()
         
     | 
| 186 | 
         
            +
                    self.dim = dim
         
     | 
| 187 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 188 | 
         
            +
                    self.window_size = window_size
         
     | 
| 189 | 
         
            +
                    self.shift_size = shift_size
         
     | 
| 190 | 
         
            +
                    self.mlp_ratio = mlp_ratio
         
     | 
| 191 | 
         
            +
                    assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 194 | 
         
            +
                    self.attn = WindowAttention(
         
     | 
| 195 | 
         
            +
                        dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
         
     | 
| 196 | 
         
            +
                        qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         
     | 
| 199 | 
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 200 | 
         
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 201 | 
         
            +
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    self.H = None
         
     | 
| 204 | 
         
            +
                    self.W = None
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                def forward(self, x, mask_matrix):
         
     | 
| 207 | 
         
            +
                    """ Forward function.
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    Args:
         
     | 
| 210 | 
         
            +
                        x: Input feature, tensor size (B, H*W, C).
         
     | 
| 211 | 
         
            +
                        H, W: Spatial resolution of the input feature.
         
     | 
| 212 | 
         
            +
                        mask_matrix: Attention mask for cyclic shift.
         
     | 
| 213 | 
         
            +
                    """
         
     | 
| 214 | 
         
            +
                    B, L, C = x.shape
         
     | 
| 215 | 
         
            +
                    H, W = self.H, self.W
         
     | 
| 216 | 
         
            +
                    assert L == H * W, "input feature has wrong size"
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    shortcut = x
         
     | 
| 219 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 220 | 
         
            +
                    x = x.view(B, H, W, C)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    # pad feature maps to multiples of window size
         
     | 
| 223 | 
         
            +
                    pad_l = pad_t = 0
         
     | 
| 224 | 
         
            +
                    pad_r = (self.window_size - W % self.window_size) % self.window_size
         
     | 
| 225 | 
         
            +
                    pad_b = (self.window_size - H % self.window_size) % self.window_size
         
     | 
| 226 | 
         
            +
                    x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
         
     | 
| 227 | 
         
            +
                    _, Hp, Wp, _ = x.shape
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    # cyclic shift
         
     | 
| 230 | 
         
            +
                    if self.shift_size > 0:
         
     | 
| 231 | 
         
            +
                        shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
         
     | 
| 232 | 
         
            +
                        attn_mask = mask_matrix
         
     | 
| 233 | 
         
            +
                    else:
         
     | 
| 234 | 
         
            +
                        shifted_x = x
         
     | 
| 235 | 
         
            +
                        attn_mask = None
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    # partition windows
         
     | 
| 238 | 
         
            +
                    x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
         
     | 
| 239 | 
         
            +
                    x_windows = x_windows.view(-1, self.window_size * self.window_size, C)  # nW*B, window_size*window_size, C
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                    # W-MSA/SW-MSA
         
     | 
| 242 | 
         
            +
                    attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    # merge windows
         
     | 
| 245 | 
         
            +
                    attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
         
     | 
| 246 | 
         
            +
                    shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp)  # B H' W' C
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                    # reverse cyclic shift
         
     | 
| 249 | 
         
            +
                    if self.shift_size > 0:
         
     | 
| 250 | 
         
            +
                        x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
         
     | 
| 251 | 
         
            +
                    else:
         
     | 
| 252 | 
         
            +
                        x = shifted_x
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    if pad_r > 0 or pad_b > 0:
         
     | 
| 255 | 
         
            +
                        x = x[:, :H, :W, :].contiguous()
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    x = x.view(B, H * W, C)
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    # FFN
         
     | 
| 260 | 
         
            +
                    x = shortcut + self.drop_path(x)
         
     | 
| 261 | 
         
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x)))
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                    return x
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
            class PatchMerging(nn.Module):
         
     | 
| 267 | 
         
            +
                """ Patch Merging Layer
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                Args:
         
     | 
| 270 | 
         
            +
                    dim (int): Number of input channels.
         
     | 
| 271 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
         
     | 
| 272 | 
         
            +
                """
         
     | 
| 273 | 
         
            +
                def __init__(self, dim, norm_layer=nn.LayerNorm):
         
     | 
| 274 | 
         
            +
                    super().__init__()
         
     | 
| 275 | 
         
            +
                    self.dim = dim
         
     | 
| 276 | 
         
            +
                    self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
         
     | 
| 277 | 
         
            +
                    self.norm = norm_layer(4 * dim)
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 280 | 
         
            +
                    """ Forward function.
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                    Args:
         
     | 
| 283 | 
         
            +
                        x: Input feature, tensor size (B, H*W, C).
         
     | 
| 284 | 
         
            +
                        H, W: Spatial resolution of the input feature.
         
     | 
| 285 | 
         
            +
                    """
         
     | 
| 286 | 
         
            +
                    B, L, C = x.shape
         
     | 
| 287 | 
         
            +
                    assert L == H * W, "input feature has wrong size"
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    x = x.view(B, H, W, C)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                    # padding
         
     | 
| 292 | 
         
            +
                    pad_input = (H % 2 == 1) or (W % 2 == 1)
         
     | 
| 293 | 
         
            +
                    if pad_input:
         
     | 
| 294 | 
         
            +
                        x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                    x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
         
     | 
| 297 | 
         
            +
                    x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
         
     | 
| 298 | 
         
            +
                    x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
         
     | 
| 299 | 
         
            +
                    x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
         
     | 
| 300 | 
         
            +
                    x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
         
     | 
| 301 | 
         
            +
                    x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    x = self.norm(x)
         
     | 
| 304 | 
         
            +
                    x = self.reduction(x)
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    return x
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
            class BasicLayer(nn.Module):
         
     | 
| 310 | 
         
            +
                """ A basic Swin Transformer layer for one stage.
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                Args:
         
     | 
| 313 | 
         
            +
                    dim (int): Number of feature channels
         
     | 
| 314 | 
         
            +
                    depth (int): Depths of this stage.
         
     | 
| 315 | 
         
            +
                    num_heads (int): Number of attention head.
         
     | 
| 316 | 
         
            +
                    window_size (int): Local window size. Default: 7.
         
     | 
| 317 | 
         
            +
                    mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
         
     | 
| 318 | 
         
            +
                    qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 319 | 
         
            +
                    qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
         
     | 
| 320 | 
         
            +
                    drop (float, optional): Dropout rate. Default: 0.0
         
     | 
| 321 | 
         
            +
                    attn_drop (float, optional): Attention dropout rate. Default: 0.0
         
     | 
| 322 | 
         
            +
                    drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
         
     | 
| 323 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
         
     | 
| 324 | 
         
            +
                    downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
         
     | 
| 325 | 
         
            +
                    use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
         
     | 
| 326 | 
         
            +
                """
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                def __init__(self,
         
     | 
| 329 | 
         
            +
                             dim,
         
     | 
| 330 | 
         
            +
                             depth,
         
     | 
| 331 | 
         
            +
                             num_heads,
         
     | 
| 332 | 
         
            +
                             window_size=7,
         
     | 
| 333 | 
         
            +
                             mlp_ratio=4.,
         
     | 
| 334 | 
         
            +
                             qkv_bias=True,
         
     | 
| 335 | 
         
            +
                             qk_scale=None,
         
     | 
| 336 | 
         
            +
                             drop=0.,
         
     | 
| 337 | 
         
            +
                             attn_drop=0.,
         
     | 
| 338 | 
         
            +
                             drop_path=0.,
         
     | 
| 339 | 
         
            +
                             norm_layer=nn.LayerNorm,
         
     | 
| 340 | 
         
            +
                             downsample=None,
         
     | 
| 341 | 
         
            +
                             use_checkpoint=False):
         
     | 
| 342 | 
         
            +
                    super().__init__()
         
     | 
| 343 | 
         
            +
                    self.window_size = window_size
         
     | 
| 344 | 
         
            +
                    self.shift_size = window_size // 2
         
     | 
| 345 | 
         
            +
                    self.depth = depth
         
     | 
| 346 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                    # build blocks
         
     | 
| 349 | 
         
            +
                    self.blocks = nn.ModuleList([
         
     | 
| 350 | 
         
            +
                        SwinTransformerBlock(
         
     | 
| 351 | 
         
            +
                            dim=dim,
         
     | 
| 352 | 
         
            +
                            num_heads=num_heads,
         
     | 
| 353 | 
         
            +
                            window_size=window_size,
         
     | 
| 354 | 
         
            +
                            shift_size=0 if (i % 2 == 0) else window_size // 2,
         
     | 
| 355 | 
         
            +
                            mlp_ratio=mlp_ratio,
         
     | 
| 356 | 
         
            +
                            qkv_bias=qkv_bias,
         
     | 
| 357 | 
         
            +
                            qk_scale=qk_scale,
         
     | 
| 358 | 
         
            +
                            drop=drop,
         
     | 
| 359 | 
         
            +
                            attn_drop=attn_drop,
         
     | 
| 360 | 
         
            +
                            drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
         
     | 
| 361 | 
         
            +
                            norm_layer=norm_layer)
         
     | 
| 362 | 
         
            +
                        for i in range(depth)])
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                    # patch merging layer
         
     | 
| 365 | 
         
            +
                    if downsample is not None:
         
     | 
| 366 | 
         
            +
                        self.downsample = downsample(dim=dim, norm_layer=norm_layer)
         
     | 
| 367 | 
         
            +
                    else:
         
     | 
| 368 | 
         
            +
                        self.downsample = None
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 371 | 
         
            +
                    """ Forward function.
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
                    Args:
         
     | 
| 374 | 
         
            +
                        x: Input feature, tensor size (B, H*W, C).
         
     | 
| 375 | 
         
            +
                        H, W: Spatial resolution of the input feature.
         
     | 
| 376 | 
         
            +
                    """
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    # calculate attention mask for SW-MSA
         
     | 
| 379 | 
         
            +
                    Hp = int(np.ceil(H / self.window_size)) * self.window_size
         
     | 
| 380 | 
         
            +
                    Wp = int(np.ceil(W / self.window_size)) * self.window_size
         
     | 
| 381 | 
         
            +
                    img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device)  # 1 Hp Wp 1
         
     | 
| 382 | 
         
            +
                    h_slices = (slice(0, -self.window_size),
         
     | 
| 383 | 
         
            +
                                slice(-self.window_size, -self.shift_size),
         
     | 
| 384 | 
         
            +
                                slice(-self.shift_size, None))
         
     | 
| 385 | 
         
            +
                    w_slices = (slice(0, -self.window_size),
         
     | 
| 386 | 
         
            +
                                slice(-self.window_size, -self.shift_size),
         
     | 
| 387 | 
         
            +
                                slice(-self.shift_size, None))
         
     | 
| 388 | 
         
            +
                    cnt = 0
         
     | 
| 389 | 
         
            +
                    for h in h_slices:
         
     | 
| 390 | 
         
            +
                        for w in w_slices:
         
     | 
| 391 | 
         
            +
                            img_mask[:, h, w, :] = cnt
         
     | 
| 392 | 
         
            +
                            cnt += 1
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                    mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
         
     | 
| 395 | 
         
            +
                    mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
         
     | 
| 396 | 
         
            +
                    attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
         
     | 
| 397 | 
         
            +
                    attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                    for blk in self.blocks:
         
     | 
| 400 | 
         
            +
                        blk.H, blk.W = H, W
         
     | 
| 401 | 
         
            +
                        if self.use_checkpoint:
         
     | 
| 402 | 
         
            +
                            x = checkpoint.checkpoint(blk, x, attn_mask)
         
     | 
| 403 | 
         
            +
                        else:
         
     | 
| 404 | 
         
            +
                            x = blk(x, attn_mask)
         
     | 
| 405 | 
         
            +
                    if self.downsample is not None:
         
     | 
| 406 | 
         
            +
                        x_down = self.downsample(x, H, W)
         
     | 
| 407 | 
         
            +
                        Wh, Ww = (H + 1) // 2, (W + 1) // 2
         
     | 
| 408 | 
         
            +
                        return x, H, W, x_down, Wh, Ww
         
     | 
| 409 | 
         
            +
                    else:
         
     | 
| 410 | 
         
            +
                        return x, H, W, x, H, W
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
            class PatchEmbed(nn.Module):
         
     | 
| 414 | 
         
            +
                """ Image to Patch Embedding
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                Args:
         
     | 
| 417 | 
         
            +
                    patch_size (int): Patch token size. Default: 4.
         
     | 
| 418 | 
         
            +
                    in_channels (int): Number of input image channels. Default: 3.
         
     | 
| 419 | 
         
            +
                    embed_dim (int): Number of linear projection output channels. Default: 96.
         
     | 
| 420 | 
         
            +
                    norm_layer (nn.Module, optional): Normalization layer. Default: None
         
     | 
| 421 | 
         
            +
                """
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
         
     | 
| 424 | 
         
            +
                    super().__init__()
         
     | 
| 425 | 
         
            +
                    patch_size = to_2tuple(patch_size)
         
     | 
| 426 | 
         
            +
                    self.patch_size = patch_size
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 429 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
         
     | 
| 432 | 
         
            +
                    if norm_layer is not None:
         
     | 
| 433 | 
         
            +
                        self.norm = norm_layer(embed_dim)
         
     | 
| 434 | 
         
            +
                    else:
         
     | 
| 435 | 
         
            +
                        self.norm = None
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                def forward(self, x):
         
     | 
| 438 | 
         
            +
                    """Forward function."""
         
     | 
| 439 | 
         
            +
                    # padding
         
     | 
| 440 | 
         
            +
                    _, _, H, W = x.size()
         
     | 
| 441 | 
         
            +
                    if W % self.patch_size[1] != 0:
         
     | 
| 442 | 
         
            +
                        x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
         
     | 
| 443 | 
         
            +
                    if H % self.patch_size[0] != 0:
         
     | 
| 444 | 
         
            +
                        x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                    x = self.proj(x)  # B C Wh Ww
         
     | 
| 447 | 
         
            +
                    if self.norm is not None:
         
     | 
| 448 | 
         
            +
                        Wh, Ww = x.size(2), x.size(3)
         
     | 
| 449 | 
         
            +
                        x = x.flatten(2).transpose(1, 2)
         
     | 
| 450 | 
         
            +
                        x = self.norm(x)
         
     | 
| 451 | 
         
            +
                        x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    return x
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
            class SwinTransformer(nn.Module):
         
     | 
| 457 | 
         
            +
                """ Swin Transformer backbone.
         
     | 
| 458 | 
         
            +
                    A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows`  -
         
     | 
| 459 | 
         
            +
                      https://arxiv.org/pdf/2103.14030
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
                Args:
         
     | 
| 462 | 
         
            +
                    pretrain_img_size (int): Input image size for training the pretrained model,
         
     | 
| 463 | 
         
            +
                        used in absolute postion embedding. Default 224.
         
     | 
| 464 | 
         
            +
                    patch_size (int | tuple(int)): Patch size. Default: 4.
         
     | 
| 465 | 
         
            +
                    in_channels (int): Number of input image channels. Default: 3.
         
     | 
| 466 | 
         
            +
                    embed_dim (int): Number of linear projection output channels. Default: 96.
         
     | 
| 467 | 
         
            +
                    depths (tuple[int]): Depths of each Swin Transformer stage.
         
     | 
| 468 | 
         
            +
                    num_heads (tuple[int]): Number of attention head of each stage.
         
     | 
| 469 | 
         
            +
                    window_size (int): Window size. Default: 7.
         
     | 
| 470 | 
         
            +
                    mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
         
     | 
| 471 | 
         
            +
                    qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
         
     | 
| 472 | 
         
            +
                    qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
         
     | 
| 473 | 
         
            +
                    drop_rate (float): Dropout rate.
         
     | 
| 474 | 
         
            +
                    attn_drop_rate (float): Attention dropout rate. Default: 0.
         
     | 
| 475 | 
         
            +
                    drop_path_rate (float): Stochastic depth rate. Default: 0.2.
         
     | 
| 476 | 
         
            +
                    norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
         
     | 
| 477 | 
         
            +
                    ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
         
     | 
| 478 | 
         
            +
                    patch_norm (bool): If True, add normalization after patch embedding. Default: True.
         
     | 
| 479 | 
         
            +
                    out_indices (Sequence[int]): Output from which stages.
         
     | 
| 480 | 
         
            +
                    frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
         
     | 
| 481 | 
         
            +
                        -1 means not freezing any parameters.
         
     | 
| 482 | 
         
            +
                    use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
         
     | 
| 483 | 
         
            +
                """
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
                def __init__(self,
         
     | 
| 486 | 
         
            +
                             pretrain_img_size=224,
         
     | 
| 487 | 
         
            +
                             patch_size=4,
         
     | 
| 488 | 
         
            +
                             in_channels=3,
         
     | 
| 489 | 
         
            +
                             embed_dim=96,
         
     | 
| 490 | 
         
            +
                             depths=[2, 2, 6, 2],
         
     | 
| 491 | 
         
            +
                             num_heads=[3, 6, 12, 24],
         
     | 
| 492 | 
         
            +
                             window_size=7,
         
     | 
| 493 | 
         
            +
                             mlp_ratio=4.,
         
     | 
| 494 | 
         
            +
                             qkv_bias=True,
         
     | 
| 495 | 
         
            +
                             qk_scale=None,
         
     | 
| 496 | 
         
            +
                             drop_rate=0.,
         
     | 
| 497 | 
         
            +
                             attn_drop_rate=0.,
         
     | 
| 498 | 
         
            +
                             drop_path_rate=0.2,
         
     | 
| 499 | 
         
            +
                             norm_layer=nn.LayerNorm,
         
     | 
| 500 | 
         
            +
                             ape=False,
         
     | 
| 501 | 
         
            +
                             patch_norm=True,
         
     | 
| 502 | 
         
            +
                             out_indices=(0, 1, 2, 3),
         
     | 
| 503 | 
         
            +
                             frozen_stages=-1,
         
     | 
| 504 | 
         
            +
                             use_checkpoint=False):
         
     | 
| 505 | 
         
            +
                    super().__init__()
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                    self.pretrain_img_size = pretrain_img_size
         
     | 
| 508 | 
         
            +
                    self.num_layers = len(depths)
         
     | 
| 509 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 510 | 
         
            +
                    self.ape = ape
         
     | 
| 511 | 
         
            +
                    self.patch_norm = patch_norm
         
     | 
| 512 | 
         
            +
                    self.out_indices = out_indices
         
     | 
| 513 | 
         
            +
                    self.frozen_stages = frozen_stages
         
     | 
| 514 | 
         
            +
             
     | 
| 515 | 
         
            +
                    # split image into non-overlapping patches
         
     | 
| 516 | 
         
            +
                    self.patch_embed = PatchEmbed(
         
     | 
| 517 | 
         
            +
                        patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
         
     | 
| 518 | 
         
            +
                        norm_layer=norm_layer if self.patch_norm else None)
         
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
                    # absolute position embedding
         
     | 
| 521 | 
         
            +
                    if self.ape:
         
     | 
| 522 | 
         
            +
                        pretrain_img_size = to_2tuple(pretrain_img_size)
         
     | 
| 523 | 
         
            +
                        patch_size = to_2tuple(patch_size)
         
     | 
| 524 | 
         
            +
                        patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                        self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
         
     | 
| 527 | 
         
            +
                        trunc_normal_(self.absolute_pos_embed, std=.02)
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    self.pos_drop = nn.Dropout(p=drop_rate)
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                    # stochastic depth
         
     | 
| 532 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    # build layers
         
     | 
| 535 | 
         
            +
                    self.layers = nn.ModuleList()
         
     | 
| 536 | 
         
            +
                    for i_layer in range(self.num_layers):
         
     | 
| 537 | 
         
            +
                        layer = BasicLayer(
         
     | 
| 538 | 
         
            +
                            dim=int(embed_dim * 2 ** i_layer),
         
     | 
| 539 | 
         
            +
                            depth=depths[i_layer],
         
     | 
| 540 | 
         
            +
                            num_heads=num_heads[i_layer],
         
     | 
| 541 | 
         
            +
                            window_size=window_size,
         
     | 
| 542 | 
         
            +
                            mlp_ratio=mlp_ratio,
         
     | 
| 543 | 
         
            +
                            qkv_bias=qkv_bias,
         
     | 
| 544 | 
         
            +
                            qk_scale=qk_scale,
         
     | 
| 545 | 
         
            +
                            drop=drop_rate,
         
     | 
| 546 | 
         
            +
                            attn_drop=attn_drop_rate,
         
     | 
| 547 | 
         
            +
                            drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
         
     | 
| 548 | 
         
            +
                            norm_layer=norm_layer,
         
     | 
| 549 | 
         
            +
                            downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
         
     | 
| 550 | 
         
            +
                            use_checkpoint=use_checkpoint)
         
     | 
| 551 | 
         
            +
                        self.layers.append(layer)
         
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
                    num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
         
     | 
| 554 | 
         
            +
                    self.num_features = num_features
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                    # add a norm layer for each output
         
     | 
| 557 | 
         
            +
                    for i_layer in out_indices:
         
     | 
| 558 | 
         
            +
                        layer = norm_layer(num_features[i_layer])
         
     | 
| 559 | 
         
            +
                        layer_name = f'norm{i_layer}'
         
     | 
| 560 | 
         
            +
                        self.add_module(layer_name, layer)
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                    self._freeze_stages()
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                def _freeze_stages(self):
         
     | 
| 565 | 
         
            +
                    if self.frozen_stages >= 0:
         
     | 
| 566 | 
         
            +
                        self.patch_embed.eval()
         
     | 
| 567 | 
         
            +
                        for param in self.patch_embed.parameters():
         
     | 
| 568 | 
         
            +
                            param.requires_grad = False
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                    if self.frozen_stages >= 1 and self.ape:
         
     | 
| 571 | 
         
            +
                        self.absolute_pos_embed.requires_grad = False
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                    if self.frozen_stages >= 2:
         
     | 
| 574 | 
         
            +
                        self.pos_drop.eval()
         
     | 
| 575 | 
         
            +
                        for i in range(0, self.frozen_stages - 1):
         
     | 
| 576 | 
         
            +
                            m = self.layers[i]
         
     | 
| 577 | 
         
            +
                            m.eval()
         
     | 
| 578 | 
         
            +
                            for param in m.parameters():
         
     | 
| 579 | 
         
            +
                                param.requires_grad = False
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                def init_weights(self, pretrained=None):
         
     | 
| 582 | 
         
            +
                    """Initialize the weights in backbone.
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    Args:
         
     | 
| 585 | 
         
            +
                        pretrained (str, optional): Path to pre-trained weights.
         
     | 
| 586 | 
         
            +
                            Defaults to None.
         
     | 
| 587 | 
         
            +
                    """
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                    def _init_weights(m):
         
     | 
| 590 | 
         
            +
                        if isinstance(m, nn.Linear):
         
     | 
| 591 | 
         
            +
                            trunc_normal_(m.weight, std=.02)
         
     | 
| 592 | 
         
            +
                            if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 593 | 
         
            +
                                nn.init.constant_(m.bias, 0)
         
     | 
| 594 | 
         
            +
                        elif isinstance(m, nn.LayerNorm):
         
     | 
| 595 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 596 | 
         
            +
                            nn.init.constant_(m.weight, 1.0)
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                    if isinstance(pretrained, str):
         
     | 
| 599 | 
         
            +
                        self.apply(_init_weights)
         
     | 
| 600 | 
         
            +
                        logger = get_root_logger()
         
     | 
| 601 | 
         
            +
                        load_checkpoint(self, pretrained, strict=False, logger=logger)
         
     | 
| 602 | 
         
            +
                    elif pretrained is None:
         
     | 
| 603 | 
         
            +
                        self.apply(_init_weights)
         
     | 
| 604 | 
         
            +
                    else:
         
     | 
| 605 | 
         
            +
                        raise TypeError('pretrained must be a str or None')
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                def forward(self, x):
         
     | 
| 608 | 
         
            +
                    """Forward function."""
         
     | 
| 609 | 
         
            +
                    x = self.patch_embed(x)
         
     | 
| 610 | 
         
            +
             
     | 
| 611 | 
         
            +
                    Wh, Ww = x.size(2), x.size(3)
         
     | 
| 612 | 
         
            +
                    if self.ape:
         
     | 
| 613 | 
         
            +
                        # interpolate the position embedding to the corresponding size
         
     | 
| 614 | 
         
            +
                        absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
         
     | 
| 615 | 
         
            +
                        x = (x + absolute_pos_embed) # B Wh*Ww C
         
     | 
| 616 | 
         
            +
                        
         
     | 
| 617 | 
         
            +
                    outs = []#x.contiguous()]
         
     | 
| 618 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 619 | 
         
            +
                    x = self.pos_drop(x)
         
     | 
| 620 | 
         
            +
                    for i in range(self.num_layers):
         
     | 
| 621 | 
         
            +
                        layer = self.layers[i]
         
     | 
| 622 | 
         
            +
                        x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                        if i in self.out_indices:
         
     | 
| 625 | 
         
            +
                            norm_layer = getattr(self, f'norm{i}')
         
     | 
| 626 | 
         
            +
                            x_out = norm_layer(x_out)
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                            out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
         
     | 
| 629 | 
         
            +
                            outs.append(out)
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                    return tuple(outs)
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                def train(self, mode=True):
         
     | 
| 634 | 
         
            +
                    """Convert the model into training mode while keep layers freezed."""
         
     | 
| 635 | 
         
            +
                    super(SwinTransformer, self).train(mode)
         
     | 
| 636 | 
         
            +
                    self._freeze_stages()
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
            def swin_v1_t():
         
     | 
| 639 | 
         
            +
                model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
         
     | 
| 640 | 
         
            +
                return model
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
            def swin_v1_s():
         
     | 
| 643 | 
         
            +
                model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
         
     | 
| 644 | 
         
            +
                return model
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
            def swin_v1_b():
         
     | 
| 647 | 
         
            +
                model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
         
     | 
| 648 | 
         
            +
                return model
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
            def swin_v1_l():
         
     | 
| 651 | 
         
            +
                model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
         
     | 
| 652 | 
         
            +
                return model
         
     | 
    	
        baseline.py
    ADDED
    
    | 
         @@ -0,0 +1,318 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from collections import OrderedDict
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            import torch.nn as nn
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
            from torchvision.models import vgg16, vgg16_bn
         
     | 
| 8 | 
         
            +
            from torchvision.models import resnet50
         
     | 
| 9 | 
         
            +
            from kornia.filters import laplacian
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from config import Config
         
     | 
| 12 | 
         
            +
            from dataset import class_labels_TR_sorted
         
     | 
| 13 | 
         
            +
            from models.backbones.build_backbone import build_backbone
         
     | 
| 14 | 
         
            +
            from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
         
     | 
| 15 | 
         
            +
            from models.modules.lateral_blocks import BasicLatBlk
         
     | 
| 16 | 
         
            +
            from models.modules.aspp import ASPP, ASPPDeformable
         
     | 
| 17 | 
         
            +
            from models.modules.ing import *
         
     | 
| 18 | 
         
            +
            from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
         
     | 
| 19 | 
         
            +
            from models.refinement.stem_layer import StemLayer
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            class BiRefNet(nn.Module):
         
     | 
| 23 | 
         
            +
                def __init__(self):
         
     | 
| 24 | 
         
            +
                    super(BiRefNet, self).__init__()
         
     | 
| 25 | 
         
            +
                    self.config = Config()
         
     | 
| 26 | 
         
            +
                    self.epoch = 1
         
     | 
| 27 | 
         
            +
                    self.bb = build_backbone(self.config.bb, pretrained=False)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    channels = self.config.lateral_channels_in_collection
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    if self.config.auxiliary_classification:
         
     | 
| 32 | 
         
            +
                        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
         
     | 
| 33 | 
         
            +
                        self.cls_head = nn.Sequential(
         
     | 
| 34 | 
         
            +
                            nn.Linear(channels[0], len(class_labels_TR_sorted))
         
     | 
| 35 | 
         
            +
                        )
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                    if self.config.squeeze_block:
         
     | 
| 38 | 
         
            +
                        self.squeeze_module = nn.Sequential(*[
         
     | 
| 39 | 
         
            +
                            eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
         
     | 
| 40 | 
         
            +
                            for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
         
     | 
| 41 | 
         
            +
                        ])
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    self.decoder = Decoder(channels)
         
     | 
| 44 | 
         
            +
                    
         
     | 
| 45 | 
         
            +
                    if self.config.locate_head:
         
     | 
| 46 | 
         
            +
                        self.locate_header = nn.ModuleList([
         
     | 
| 47 | 
         
            +
                            BasicDecBlk(channels[0], channels[-1]),
         
     | 
| 48 | 
         
            +
                            nn.Sequential(
         
     | 
| 49 | 
         
            +
                                nn.Conv2d(channels[-1], 1, 1, 1, 0),
         
     | 
| 50 | 
         
            +
                            )
         
     | 
| 51 | 
         
            +
                        ])
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    if self.config.ender:
         
     | 
| 54 | 
         
            +
                        self.dec_end = nn.Sequential(
         
     | 
| 55 | 
         
            +
                            nn.Conv2d(1, 16, 3, 1, 1),
         
     | 
| 56 | 
         
            +
                            nn.Conv2d(16, 1, 3, 1, 1),
         
     | 
| 57 | 
         
            +
                            nn.ReLU(inplace=True),
         
     | 
| 58 | 
         
            +
                        )
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    # refine patch-level segmentation
         
     | 
| 61 | 
         
            +
                    if self.config.refine:
         
     | 
| 62 | 
         
            +
                        if self.config.refine == 'itself':
         
     | 
| 63 | 
         
            +
                            self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3)
         
     | 
| 64 | 
         
            +
                        else:
         
     | 
| 65 | 
         
            +
                            self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    if self.config.freeze_bb:
         
     | 
| 68 | 
         
            +
                        # Freeze the backbone...
         
     | 
| 69 | 
         
            +
                        print(self.named_parameters())
         
     | 
| 70 | 
         
            +
                        for key, value in self.named_parameters():
         
     | 
| 71 | 
         
            +
                            if 'bb.' in key and 'refiner.' not in key:
         
     | 
| 72 | 
         
            +
                                value.requires_grad = False
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                def forward_enc(self, x):
         
     | 
| 75 | 
         
            +
                    if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
         
     | 
| 76 | 
         
            +
                        x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
         
     | 
| 77 | 
         
            +
                    else:
         
     | 
| 78 | 
         
            +
                        x1, x2, x3, x4 = self.bb(x)
         
     | 
| 79 | 
         
            +
                        if self.config.mul_scl_ipt == 'cat':
         
     | 
| 80 | 
         
            +
                            B, C, H, W = x.shape
         
     | 
| 81 | 
         
            +
                            x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
         
     | 
| 82 | 
         
            +
                            x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 83 | 
         
            +
                            x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 84 | 
         
            +
                            x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 85 | 
         
            +
                            x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
         
     | 
| 86 | 
         
            +
                        elif self.config.mul_scl_ipt == 'add':
         
     | 
| 87 | 
         
            +
                            B, C, H, W = x.shape
         
     | 
| 88 | 
         
            +
                            x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
         
     | 
| 89 | 
         
            +
                            x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 90 | 
         
            +
                            x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 91 | 
         
            +
                            x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 92 | 
         
            +
                            x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 93 | 
         
            +
                    class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
         
     | 
| 94 | 
         
            +
                    if self.config.cxt:
         
     | 
| 95 | 
         
            +
                        x4 = torch.cat(
         
     | 
| 96 | 
         
            +
                            (
         
     | 
| 97 | 
         
            +
                                *[
         
     | 
| 98 | 
         
            +
                                    F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
         
     | 
| 99 | 
         
            +
                                    F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
         
     | 
| 100 | 
         
            +
                                    F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
         
     | 
| 101 | 
         
            +
                                ][-len(self.config.cxt):],
         
     | 
| 102 | 
         
            +
                                x4
         
     | 
| 103 | 
         
            +
                            ),
         
     | 
| 104 | 
         
            +
                            dim=1
         
     | 
| 105 | 
         
            +
                        )
         
     | 
| 106 | 
         
            +
                    return (x1, x2, x3, x4), class_preds
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                # def forward_loc(self, x):
         
     | 
| 109 | 
         
            +
                #     ########## Encoder ##########
         
     | 
| 110 | 
         
            +
                #     (x1, x2, x3, x4), class_preds = self.forward_enc(x)
         
     | 
| 111 | 
         
            +
                #     if self.config.squeeze_block:
         
     | 
| 112 | 
         
            +
                #         x4 = self.squeeze_module(x4)
         
     | 
| 113 | 
         
            +
                #     if self.config.locate_head:
         
     | 
| 114 | 
         
            +
                #         locate_preds = self.locate_header[1](
         
     | 
| 115 | 
         
            +
                #             F.interpolate(
         
     | 
| 116 | 
         
            +
                #                 self.locate_header[0](
         
     | 
| 117 | 
         
            +
                #                     F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 118 | 
         
            +
                #                 ), size=x.shape[2:], mode='bilinear', align_corners=True
         
     | 
| 119 | 
         
            +
                #             )
         
     | 
| 120 | 
         
            +
                #         )
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                def forward_ori(self, x):
         
     | 
| 123 | 
         
            +
                    ########## Encoder ##########
         
     | 
| 124 | 
         
            +
                    (x1, x2, x3, x4), class_preds = self.forward_enc(x)
         
     | 
| 125 | 
         
            +
                    if self.config.squeeze_block:
         
     | 
| 126 | 
         
            +
                        x4 = self.squeeze_module(x4)
         
     | 
| 127 | 
         
            +
                    ########## Decoder ##########
         
     | 
| 128 | 
         
            +
                    features = [x, x1, x2, x3, x4]
         
     | 
| 129 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 130 | 
         
            +
                        features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
         
     | 
| 131 | 
         
            +
                    scaled_preds = self.decoder(features)
         
     | 
| 132 | 
         
            +
                    return scaled_preds, class_preds
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                def forward_ref(self, x, pred):
         
     | 
| 135 | 
         
            +
                    # refine patch-level segmentation
         
     | 
| 136 | 
         
            +
                    if pred.shape[2:] != x.shape[2:]:
         
     | 
| 137 | 
         
            +
                        pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 138 | 
         
            +
                    # pred = pred.sigmoid()
         
     | 
| 139 | 
         
            +
                    if self.config.refine == 'itself':
         
     | 
| 140 | 
         
            +
                        x = self.stem_layer(torch.cat([x, pred], dim=1))
         
     | 
| 141 | 
         
            +
                        scaled_preds, class_preds = self.forward_ori(x)
         
     | 
| 142 | 
         
            +
                    else:
         
     | 
| 143 | 
         
            +
                        scaled_preds = self.refiner([x, pred])
         
     | 
| 144 | 
         
            +
                        class_preds = None
         
     | 
| 145 | 
         
            +
                    return scaled_preds, class_preds
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                def forward_ref_end(self, x):
         
     | 
| 148 | 
         
            +
                    # remove the grids of concatenated preds
         
     | 
| 149 | 
         
            +
                    return self.dec_end(x) if self.config.ender else x
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                # def forward(self, x):
         
     | 
| 153 | 
         
            +
                #     if self.config.refine:
         
     | 
| 154 | 
         
            +
                #         scaled_preds, class_preds_ori = self.forward_ori(F.interpolate(x, size=(x.shape[2]//4, x.shape[3]//4), mode='bilinear', align_corners=True))
         
     | 
| 155 | 
         
            +
                #         class_preds_lst = [class_preds_ori]
         
     | 
| 156 | 
         
            +
                #         for _ in range(self.config.refine_iteration):
         
     | 
| 157 | 
         
            +
                #             scaled_preds_ref, class_preds_ref = self.forward_ref(x, scaled_preds[-1])
         
     | 
| 158 | 
         
            +
                #             scaled_preds += scaled_preds_ref
         
     | 
| 159 | 
         
            +
                #             class_preds_lst.append(class_preds_ref)
         
     | 
| 160 | 
         
            +
                #     else:
         
     | 
| 161 | 
         
            +
                #         scaled_preds, class_preds = self.forward_ori(x)
         
     | 
| 162 | 
         
            +
                #         class_preds_lst = [class_preds]
         
     | 
| 163 | 
         
            +
                #     return [scaled_preds, class_preds_lst] if self.training else scaled_preds
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                def forward(self, x):
         
     | 
| 166 | 
         
            +
                    scaled_preds, class_preds = self.forward_ori(x)
         
     | 
| 167 | 
         
            +
                    class_preds_lst = [class_preds]
         
     | 
| 168 | 
         
            +
                    return [scaled_preds, class_preds_lst] if self.training else scaled_preds
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 172 | 
         
            +
                def __init__(self, channels):
         
     | 
| 173 | 
         
            +
                    super(Decoder, self).__init__()
         
     | 
| 174 | 
         
            +
                    self.config = Config()
         
     | 
| 175 | 
         
            +
                    DecoderBlock = eval(self.config.dec_blk)
         
     | 
| 176 | 
         
            +
                    LateralBlock = eval(self.config.lat_blk)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 179 | 
         
            +
                        self.split = self.config.dec_ipt_split
         
     | 
| 180 | 
         
            +
                        N_dec_ipt = 64
         
     | 
| 181 | 
         
            +
                        DBlock = SimpleConvs
         
     | 
| 182 | 
         
            +
                        ic = 64
         
     | 
| 183 | 
         
            +
                        ipt_cha_opt = 1
         
     | 
| 184 | 
         
            +
                        self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 185 | 
         
            +
                        self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 186 | 
         
            +
                        self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 187 | 
         
            +
                        self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
         
     | 
| 188 | 
         
            +
                    else:
         
     | 
| 189 | 
         
            +
                        self.split = None
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    self.decoder_block4 = DecoderBlock(channels[0], channels[1])
         
     | 
| 192 | 
         
            +
                    self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
         
     | 
| 193 | 
         
            +
                    self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
         
     | 
| 194 | 
         
            +
                    self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
         
     | 
| 195 | 
         
            +
                    self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    self.lateral_block4 = LateralBlock(channels[1], channels[1])
         
     | 
| 198 | 
         
            +
                    self.lateral_block3 = LateralBlock(channels[2], channels[2])
         
     | 
| 199 | 
         
            +
                    self.lateral_block2 = LateralBlock(channels[3], channels[3])
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 202 | 
         
            +
                        self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
         
     | 
| 203 | 
         
            +
                        self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
         
     | 
| 204 | 
         
            +
                        self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                        if self.config.out_ref:
         
     | 
| 207 | 
         
            +
                            _N = 16
         
     | 
| 208 | 
         
            +
                            # self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
         
     | 
| 209 | 
         
            +
                            self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
         
     | 
| 210 | 
         
            +
                            self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True))
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                            # self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 213 | 
         
            +
                            self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 214 | 
         
            +
                            self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 215 | 
         
            +
                            
         
     | 
| 216 | 
         
            +
                            # self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 217 | 
         
            +
                            self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 218 | 
         
            +
                            self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                def get_patches_batch(self, x, p):
         
     | 
| 222 | 
         
            +
                    _size_h, _size_w = p.shape[2:]
         
     | 
| 223 | 
         
            +
                    patches_batch = []
         
     | 
| 224 | 
         
            +
                    for idx in range(x.shape[0]):
         
     | 
| 225 | 
         
            +
                        columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
         
     | 
| 226 | 
         
            +
                        patches_x = []
         
     | 
| 227 | 
         
            +
                        for column_x in columns_x:
         
     | 
| 228 | 
         
            +
                            patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
         
     | 
| 229 | 
         
            +
                        patch_sample = torch.cat(patches_x, dim=1)
         
     | 
| 230 | 
         
            +
                        patches_batch.append(patch_sample)
         
     | 
| 231 | 
         
            +
                    return torch.cat(patches_batch, dim=0)
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                def forward(self, features):
         
     | 
| 234 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 235 | 
         
            +
                        outs_gdt_pred = []
         
     | 
| 236 | 
         
            +
                        outs_gdt_label = []
         
     | 
| 237 | 
         
            +
                        x, x1, x2, x3, x4, gdt_gt = features
         
     | 
| 238 | 
         
            +
                    else:
         
     | 
| 239 | 
         
            +
                        x, x1, x2, x3, x4 = features
         
     | 
| 240 | 
         
            +
                    outs = []
         
     | 
| 241 | 
         
            +
                    p4 = self.decoder_block4(x4)
         
     | 
| 242 | 
         
            +
                    m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
         
     | 
| 243 | 
         
            +
                    _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 244 | 
         
            +
                    _p3 = _p4 + self.lateral_block4(x3)
         
     | 
| 245 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 246 | 
         
            +
                        patches_batch = self.get_patches_batch(x, _p3) if self.split else x
         
     | 
| 247 | 
         
            +
                        _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    p3 = self.decoder_block3(_p3)
         
     | 
| 250 | 
         
            +
                    m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
         
     | 
| 251 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 252 | 
         
            +
                        # >> GT:
         
     | 
| 253 | 
         
            +
                        # m3 --dilation--> m3_dia
         
     | 
| 254 | 
         
            +
                        # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
         
     | 
| 255 | 
         
            +
                        m3_dia = m3
         
     | 
| 256 | 
         
            +
                        gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 257 | 
         
            +
                        outs_gdt_label.append(gdt_label_main_3)
         
     | 
| 258 | 
         
            +
                        # >> Pred:
         
     | 
| 259 | 
         
            +
                        # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
         
     | 
| 260 | 
         
            +
                        # F_3^G --sigmoid--> A_3^G
         
     | 
| 261 | 
         
            +
                        p3_gdt = self.gdt_convs_3(p3)
         
     | 
| 262 | 
         
            +
                        gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
         
     | 
| 263 | 
         
            +
                        outs_gdt_pred.append(gdt_pred_3)
         
     | 
| 264 | 
         
            +
                        gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
         
     | 
| 265 | 
         
            +
                        # >> Finally:
         
     | 
| 266 | 
         
            +
                        # p3 = p3 * A_3^G
         
     | 
| 267 | 
         
            +
                        p3 = p3 * gdt_attn_3
         
     | 
| 268 | 
         
            +
                    _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 269 | 
         
            +
                    _p2 = _p3 + self.lateral_block3(x2)
         
     | 
| 270 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 271 | 
         
            +
                        patches_batch = self.get_patches_batch(x, _p2) if self.split else x
         
     | 
| 272 | 
         
            +
                        _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                    p2 = self.decoder_block2(_p2)
         
     | 
| 275 | 
         
            +
                    m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
         
     | 
| 276 | 
         
            +
                    if self.config.out_ref:
         
     | 
| 277 | 
         
            +
                        # >> GT:
         
     | 
| 278 | 
         
            +
                        m2_dia = m2
         
     | 
| 279 | 
         
            +
                        gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 280 | 
         
            +
                        outs_gdt_label.append(gdt_label_main_2)
         
     | 
| 281 | 
         
            +
                        # >> Pred:
         
     | 
| 282 | 
         
            +
                        p2_gdt = self.gdt_convs_2(p2)
         
     | 
| 283 | 
         
            +
                        gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
         
     | 
| 284 | 
         
            +
                        outs_gdt_pred.append(gdt_pred_2)
         
     | 
| 285 | 
         
            +
                        gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
         
     | 
| 286 | 
         
            +
                        # >> Finally:
         
     | 
| 287 | 
         
            +
                        p2 = p2 * gdt_attn_2
         
     | 
| 288 | 
         
            +
                    _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 289 | 
         
            +
                    _p1 = _p2 + self.lateral_block2(x1)
         
     | 
| 290 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 291 | 
         
            +
                        patches_batch = self.get_patches_batch(x, _p1) if self.split else x
         
     | 
| 292 | 
         
            +
                        _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    _p1 = self.decoder_block1(_p1)
         
     | 
| 295 | 
         
            +
                    _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 296 | 
         
            +
                    if self.config.dec_ipt:
         
     | 
| 297 | 
         
            +
                        patches_batch = self.get_patches_batch(x, _p1) if self.split else x
         
     | 
| 298 | 
         
            +
                        _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
         
     | 
| 299 | 
         
            +
                    p1_out = self.conv_out1(_p1)
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 302 | 
         
            +
                        outs.append(m4)
         
     | 
| 303 | 
         
            +
                        outs.append(m3)
         
     | 
| 304 | 
         
            +
                        outs.append(m2)
         
     | 
| 305 | 
         
            +
                    outs.append(p1_out)
         
     | 
| 306 | 
         
            +
                    return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
            class SimpleConvs(nn.Module):
         
     | 
| 310 | 
         
            +
                def __init__(
         
     | 
| 311 | 
         
            +
                    self, in_channels: int, out_channels: int, inter_channels=64
         
     | 
| 312 | 
         
            +
                ) -> None:
         
     | 
| 313 | 
         
            +
                    super().__init__()
         
     | 
| 314 | 
         
            +
                    self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
         
     | 
| 315 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                def forward(self, x):
         
     | 
| 318 | 
         
            +
                    return self.conv_out(self.conv1(x))
         
     | 
    	
        birefnet_dis.pth
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:7db692b52f7f855c41d05e4427a05ac63a755f39f80e11d6185eb48b80acbea8
         
     | 
| 3 | 
         
            +
            size 848968257
         
     | 
    	
        config.py
    ADDED
    
    | 
         @@ -0,0 +1,109 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class Config():
         
     | 
| 6 | 
         
            +
                def __init__(self) -> None:
         
     | 
| 7 | 
         
            +
                    self.ms_supervision = True
         
     | 
| 8 | 
         
            +
                    self.out_ref = self.ms_supervision and True
         
     | 
| 9 | 
         
            +
                    self.dec_ipt = True
         
     | 
| 10 | 
         
            +
                    self.dec_ipt_split = True
         
     | 
| 11 | 
         
            +
                    self.locate_head = False
         
     | 
| 12 | 
         
            +
                    self.cxt_num = [0, 3][1]    # multi-scale skip connections from encoder
         
     | 
| 13 | 
         
            +
                    self.mul_scl_ipt = ['', 'add', 'cat'][2]
         
     | 
| 14 | 
         
            +
                    self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
         
     | 
| 15 | 
         
            +
                    self.progressive_ref = self.refine and True
         
     | 
| 16 | 
         
            +
                    self.ender = self.progressive_ref and False
         
     | 
| 17 | 
         
            +
                    self.scale = self.progressive_ref and 2
         
     | 
| 18 | 
         
            +
                    self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
         
     | 
| 19 | 
         
            +
                    self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
         
     | 
| 20 | 
         
            +
                    self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
         
     | 
| 21 | 
         
            +
                    self.auxiliary_classification = False
         
     | 
| 22 | 
         
            +
                    self.refine_iteration = 1
         
     | 
| 23 | 
         
            +
                    self.freeze_bb = False
         
     | 
| 24 | 
         
            +
                    self.precisionHigh = True
         
     | 
| 25 | 
         
            +
                    self.compile = True
         
     | 
| 26 | 
         
            +
                    self.load_all = True
         
     | 
| 27 | 
         
            +
                    self.verbose_eval = True
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                    self.size = 1024
         
     | 
| 30 | 
         
            +
                    self.batch_size = 2
         
     | 
| 31 | 
         
            +
                    self.IoU_finetune_last_epochs = [0, -40][1]     # choose 0 to skip
         
     | 
| 32 | 
         
            +
                    if self.dec_blk == 'HierarAttDecBlk':
         
     | 
| 33 | 
         
            +
                        self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
         
     | 
| 34 | 
         
            +
                    self.model = [
         
     | 
| 35 | 
         
            +
                        'BSL',
         
     | 
| 36 | 
         
            +
                    ][0]
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    # Components
         
     | 
| 39 | 
         
            +
                    self.lat_blk = ['BasicLatBlk'][0]
         
     | 
| 40 | 
         
            +
                    self.dec_channels_inter = ['fixed', 'adap'][0]
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                    # Backbone
         
     | 
| 43 | 
         
            +
                    self.bb = [
         
     | 
| 44 | 
         
            +
                        'vgg16', 'vgg16bn', 'resnet50',         # 0, 1, 2
         
     | 
| 45 | 
         
            +
                        'pvt_v2_b2', 'pvt_v2_b5',               # 3-bs10, 4-bs5
         
     | 
| 46 | 
         
            +
                        'swin_v1_b', 'swin_v1_l'                # 5-bs9, 6-bs6
         
     | 
| 47 | 
         
            +
                    ][6]
         
     | 
| 48 | 
         
            +
                    self.lateral_channels_in_collection = {
         
     | 
| 49 | 
         
            +
                        'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
         
     | 
| 50 | 
         
            +
                        'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
         
     | 
| 51 | 
         
            +
                        'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
         
     | 
| 52 | 
         
            +
                    }[self.bb]
         
     | 
| 53 | 
         
            +
                    if self.mul_scl_ipt == 'cat':
         
     | 
| 54 | 
         
            +
                        self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
         
     | 
| 55 | 
         
            +
                    self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
         
     | 
| 56 | 
         
            +
                    self.sys_home_dir = '/root/autodl-tmp'
         
     | 
| 57 | 
         
            +
                    self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
         
     | 
| 58 | 
         
            +
                    self.weights = {
         
     | 
| 59 | 
         
            +
                        'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
         
     | 
| 60 | 
         
            +
                        'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
         
     | 
| 61 | 
         
            +
                        'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
         
     | 
| 62 | 
         
            +
                        'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
         
     | 
| 63 | 
         
            +
                    }
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                    # Training
         
     | 
| 66 | 
         
            +
                    self.num_workers = 5        # will be decrease to min(it, batch_size) at the initialization of the data_loader 
         
     | 
| 67 | 
         
            +
                    self.optimizer = ['Adam', 'AdamW'][0]
         
     | 
| 68 | 
         
            +
                    self.lr = 1e-5 * math.sqrt(self.batch_size / 5)  # adapt the lr linearly
         
     | 
| 69 | 
         
            +
                    self.lr_decay_epochs = [1e4]    # Set to negative N to decay the lr in the last N-th epoch.
         
     | 
| 70 | 
         
            +
                    self.lr_decay_rate = 0.5
         
     | 
| 71 | 
         
            +
                    self.only_S_MAE = False
         
     | 
| 72 | 
         
            +
                    self.SDPA_enabled = False    # Bug. Slower and errors occur in multi-GPUs
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    # Data
         
     | 
| 75 | 
         
            +
                    self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
         
     | 
| 76 | 
         
            +
                    self.dataset = ['DIS5K', 'COD', 'SOD'][0]
         
     | 
| 77 | 
         
            +
                    self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    # Loss
         
     | 
| 80 | 
         
            +
                    self.lambdas_pix_last = {
         
     | 
| 81 | 
         
            +
                        # not 0 means opening this loss
         
     | 
| 82 | 
         
            +
                        # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
         
     | 
| 83 | 
         
            +
                        'bce': 30 * 1,          # high performance
         
     | 
| 84 | 
         
            +
                        'iou': 0.5 * 1,         # 0 / 255
         
     | 
| 85 | 
         
            +
                        'iou_patch': 0.5 * 0,   # 0 / 255, win_size = (64, 64)
         
     | 
| 86 | 
         
            +
                        'mse': 150 * 0,         # can smooth the saliency map
         
     | 
| 87 | 
         
            +
                        'triplet': 3 * 0,
         
     | 
| 88 | 
         
            +
                        'reg': 100 * 0,
         
     | 
| 89 | 
         
            +
                        'ssim': 10 * 1,          # help contours,
         
     | 
| 90 | 
         
            +
                        'cnt': 5 * 0,          # help contours
         
     | 
| 91 | 
         
            +
                    }
         
     | 
| 92 | 
         
            +
                    self.lambdas_cls = {
         
     | 
| 93 | 
         
            +
                        'ce': 5.0
         
     | 
| 94 | 
         
            +
                    }
         
     | 
| 95 | 
         
            +
                    # Adv
         
     | 
| 96 | 
         
            +
                    self.lambda_adv_g = 10. * 0        # turn to 0 to avoid adv training
         
     | 
| 97 | 
         
            +
                    self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    # others
         
     | 
| 100 | 
         
            +
                    self.device = [0, 'cpu'][1]     # .to(0) = .to('cuda:0')
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    self.batch_size_valid = 1
         
     | 
| 103 | 
         
            +
                    self.rand_seed = 7
         
     | 
| 104 | 
         
            +
                    run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
         
     | 
| 105 | 
         
            +
                    # with open(run_sh_file[0], 'r') as f:
         
     | 
| 106 | 
         
            +
                    #     lines = f.readlines()
         
     | 
| 107 | 
         
            +
                    #     self.save_last = int([l.strip() for l in lines if 'val_last=' in l][0].split('=')[-1])
         
     | 
| 108 | 
         
            +
                    #     self.save_step = int([l.strip() for l in lines if 'step=' in l][0].split('=')[-1])
         
     | 
| 109 | 
         
            +
                    # self.val_step = [0, self.save_step][0]
         
     | 
    	
        dataset.py
    ADDED
    
    | 
         @@ -0,0 +1,91 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import cv2
         
     | 
| 3 | 
         
            +
            from tqdm import tqdm
         
     | 
| 4 | 
         
            +
            from PIL import Image
         
     | 
| 5 | 
         
            +
            from torch.utils import data
         
     | 
| 6 | 
         
            +
            from torchvision import transforms
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from preproc import preproc
         
     | 
| 9 | 
         
            +
            from config import Config
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            Image.MAX_IMAGE_PIXELS = None       # remove DecompressionBombWarning
         
     | 
| 13 | 
         
            +
            config = Config()
         
     | 
| 14 | 
         
            +
            _class_labels_TR_sorted = 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
         
     | 
| 15 | 
         
            +
            class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            class MyData(data.Dataset):
         
     | 
| 19 | 
         
            +
                def __init__(self, data_root, image_size, is_train=True):
         
     | 
| 20 | 
         
            +
                    self.size_train = image_size
         
     | 
| 21 | 
         
            +
                    self.size_test = image_size
         
     | 
| 22 | 
         
            +
                    self.keep_size = not config.size
         
     | 
| 23 | 
         
            +
                    self.data_size = (config.size, config.size)
         
     | 
| 24 | 
         
            +
                    self.is_train = is_train
         
     | 
| 25 | 
         
            +
                    self.load_all = config.load_all
         
     | 
| 26 | 
         
            +
                    self.device = config.device
         
     | 
| 27 | 
         
            +
                    self.dataset = data_root.replace('\\', '/').split('/')[-1]
         
     | 
| 28 | 
         
            +
                    if self.is_train and config.auxiliary_classification:
         
     | 
| 29 | 
         
            +
                        self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
         
     | 
| 30 | 
         
            +
                    self.transform_image = transforms.Compose([
         
     | 
| 31 | 
         
            +
                        transforms.Resize(self.data_size),
         
     | 
| 32 | 
         
            +
                        transforms.ToTensor(),
         
     | 
| 33 | 
         
            +
                        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
         
     | 
| 34 | 
         
            +
                    ][self.load_all or self.keep_size:])
         
     | 
| 35 | 
         
            +
                    self.transform_label = transforms.Compose([
         
     | 
| 36 | 
         
            +
                        transforms.Resize(self.data_size),
         
     | 
| 37 | 
         
            +
                        transforms.ToTensor(),
         
     | 
| 38 | 
         
            +
                    ][self.load_all or self.keep_size:])
         
     | 
| 39 | 
         
            +
                    ## 'im' and 'gt' need modifying
         
     | 
| 40 | 
         
            +
                    image_root = os.path.join(data_root, 'im')
         
     | 
| 41 | 
         
            +
                    self.image_paths = [os.path.join(image_root, p) for p in os.listdir(image_root)]
         
     | 
| 42 | 
         
            +
                    self.label_paths = [p.replace('/im/', '/gt/').replace('.jpg', '.png') for p in self.image_paths]
         
     | 
| 43 | 
         
            +
                    if self.load_all:
         
     | 
| 44 | 
         
            +
                        self.images_loaded, self.labels_loaded = [], []
         
     | 
| 45 | 
         
            +
                        self.class_labels_loaded = []
         
     | 
| 46 | 
         
            +
                        # for image_path, label_path in zip(self.image_paths, self.label_paths):
         
     | 
| 47 | 
         
            +
                        for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
         
     | 
| 48 | 
         
            +
                            _image = cv2.imread(image_path)
         
     | 
| 49 | 
         
            +
                            _label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE)
         
     | 
| 50 | 
         
            +
                            if not self.keep_size:
         
     | 
| 51 | 
         
            +
                                _image_rs = cv2.resize(_image, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
         
     | 
| 52 | 
         
            +
                                _label_rs = cv2.resize(_label, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
         
     | 
| 53 | 
         
            +
                            self.images_loaded.append(
         
     | 
| 54 | 
         
            +
                                Image.fromarray(cv2.cvtColor(_image_rs, cv2.COLOR_BGR2RGB)).convert('RGB')
         
     | 
| 55 | 
         
            +
                            )
         
     | 
| 56 | 
         
            +
                            self.labels_loaded.append(
         
     | 
| 57 | 
         
            +
                                Image.fromarray(_label_rs).convert('L')
         
     | 
| 58 | 
         
            +
                            )
         
     | 
| 59 | 
         
            +
                            self.class_labels_loaded.append(
         
     | 
| 60 | 
         
            +
                                self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
         
     | 
| 61 | 
         
            +
                            )
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                def __getitem__(self, index):
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    if self.load_all:
         
     | 
| 67 | 
         
            +
                        image = self.images_loaded[index]
         
     | 
| 68 | 
         
            +
                        label = self.labels_loaded[index]
         
     | 
| 69 | 
         
            +
                        class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
         
     | 
| 70 | 
         
            +
                    else:
         
     | 
| 71 | 
         
            +
                        image = Image.open(self.image_paths[index]).convert('RGB')
         
     | 
| 72 | 
         
            +
                        label = Image.open(self.label_paths[index]).convert('L')
         
     | 
| 73 | 
         
            +
                        class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    # loading image and label
         
     | 
| 76 | 
         
            +
                    if self.is_train:
         
     | 
| 77 | 
         
            +
                        image, label = preproc(image, label, preproc_methods=config.preproc_methods)
         
     | 
| 78 | 
         
            +
                    # else:
         
     | 
| 79 | 
         
            +
                    #     if _label.shape[0] > 2048 or _label.shape[1] > 2048:
         
     | 
| 80 | 
         
            +
                    #         _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
         
     | 
| 81 | 
         
            +
                    #         _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    image, label = self.transform_image(image), self.transform_label(label)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    if self.is_train:
         
     | 
| 86 | 
         
            +
                        return image, label, class_label
         
     | 
| 87 | 
         
            +
                    else:
         
     | 
| 88 | 
         
            +
                        return image, label, self.label_paths[index]
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                def __len__(self):
         
     | 
| 91 | 
         
            +
                    return len(self.image_paths)
         
     | 
    	
        examples/DIS-TE1-firstOne.jpg
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        examples/DIS-TE2-firstOne.jpg
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        examples/DIS-TE3-firstOne.jpg
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        examples/DIS-TE4-firstOne.jpg
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        examples/DIS-VD-firstOne.jpg
    ADDED
    
    
											 
									 | 
									
								
											Git LFS Details
  | 
									
    	
        modules/aspp.py
    ADDED
    
    | 
         @@ -0,0 +1,162 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from models.modules.deform_conv import DeformableConv2d
         
     | 
| 5 | 
         
            +
            from config import Config
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            config = Config()
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class ASPPComplex(nn.Module):
         
     | 
| 12 | 
         
            +
                def __init__(self, in_channels=64, out_channels=None, output_stride=16):
         
     | 
| 13 | 
         
            +
                    super(ASPPComplex, self).__init__()
         
     | 
| 14 | 
         
            +
                    self.down_scale = 1
         
     | 
| 15 | 
         
            +
                    if out_channels is None:
         
     | 
| 16 | 
         
            +
                        out_channels = in_channels
         
     | 
| 17 | 
         
            +
                    self.in_channelster = 256 // self.down_scale
         
     | 
| 18 | 
         
            +
                    if output_stride == 16:
         
     | 
| 19 | 
         
            +
                        dilations = [1, 6, 12, 18]
         
     | 
| 20 | 
         
            +
                    elif output_stride == 8:
         
     | 
| 21 | 
         
            +
                        dilations = [1, 12, 24, 36]
         
     | 
| 22 | 
         
            +
                    else:
         
     | 
| 23 | 
         
            +
                        raise NotImplementedError
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                    self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
         
     | 
| 26 | 
         
            +
                    self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
         
     | 
| 27 | 
         
            +
                    self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
         
     | 
| 28 | 
         
            +
                    self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         
     | 
| 31 | 
         
            +
                                                         nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
         
     | 
| 32 | 
         
            +
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         
     | 
| 33 | 
         
            +
                                                         nn.ReLU(inplace=True))
         
     | 
| 34 | 
         
            +
                    self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
         
     | 
| 35 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(out_channels)
         
     | 
| 36 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 37 | 
         
            +
                    self.dropout = nn.Dropout(0.5)
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                def forward(self, x):
         
     | 
| 40 | 
         
            +
                    x1 = self.aspp1(x)
         
     | 
| 41 | 
         
            +
                    x2 = self.aspp2(x)
         
     | 
| 42 | 
         
            +
                    x3 = self.aspp3(x)
         
     | 
| 43 | 
         
            +
                    x4 = self.aspp4(x)
         
     | 
| 44 | 
         
            +
                    x5 = self.global_avg_pool(x)
         
     | 
| 45 | 
         
            +
                    x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
         
     | 
| 46 | 
         
            +
                    x = torch.cat((x1, x2, x3, x4, x5), dim=1)
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 49 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 50 | 
         
            +
                    x = self.relu(x)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    return self.dropout(x)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            class _ASPPModule(nn.Module):
         
     | 
| 56 | 
         
            +
                def __init__(self, in_channels, planes, kernel_size, padding, dilation):
         
     | 
| 57 | 
         
            +
                    super(_ASPPModule, self).__init__()
         
     | 
| 58 | 
         
            +
                    self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
         
     | 
| 59 | 
         
            +
                                                        stride=1, padding=padding, dilation=dilation, bias=False)
         
     | 
| 60 | 
         
            +
                    self.bn = nn.BatchNorm2d(planes)
         
     | 
| 61 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                def forward(self, x):
         
     | 
| 64 | 
         
            +
                    x = self.atrous_conv(x)
         
     | 
| 65 | 
         
            +
                    x = self.bn(x)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    return self.relu(x)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            class ASPP(nn.Module):
         
     | 
| 70 | 
         
            +
                def __init__(self, in_channels=64, out_channels=None, output_stride=16):
         
     | 
| 71 | 
         
            +
                    super(ASPP, self).__init__()
         
     | 
| 72 | 
         
            +
                    self.down_scale = 1
         
     | 
| 73 | 
         
            +
                    if out_channels is None:
         
     | 
| 74 | 
         
            +
                        out_channels = in_channels
         
     | 
| 75 | 
         
            +
                    self.in_channelster = 256 // self.down_scale
         
     | 
| 76 | 
         
            +
                    if output_stride == 16:
         
     | 
| 77 | 
         
            +
                        dilations = [1, 6, 12, 18]
         
     | 
| 78 | 
         
            +
                    elif output_stride == 8:
         
     | 
| 79 | 
         
            +
                        dilations = [1, 12, 24, 36]
         
     | 
| 80 | 
         
            +
                    else:
         
     | 
| 81 | 
         
            +
                        raise NotImplementedError
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
         
     | 
| 84 | 
         
            +
                    self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
         
     | 
| 85 | 
         
            +
                    self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
         
     | 
| 86 | 
         
            +
                    self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         
     | 
| 89 | 
         
            +
                                                         nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
         
     | 
| 90 | 
         
            +
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         
     | 
| 91 | 
         
            +
                                                         nn.ReLU(inplace=True))
         
     | 
| 92 | 
         
            +
                    self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
         
     | 
| 93 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(out_channels)
         
     | 
| 94 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 95 | 
         
            +
                    self.dropout = nn.Dropout(0.5)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                def forward(self, x):
         
     | 
| 98 | 
         
            +
                    x1 = self.aspp1(x)
         
     | 
| 99 | 
         
            +
                    x2 = self.aspp2(x)
         
     | 
| 100 | 
         
            +
                    x3 = self.aspp3(x)
         
     | 
| 101 | 
         
            +
                    x4 = self.aspp4(x)
         
     | 
| 102 | 
         
            +
                    x5 = self.global_avg_pool(x)
         
     | 
| 103 | 
         
            +
                    x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
         
     | 
| 104 | 
         
            +
                    x = torch.cat((x1, x2, x3, x4, x5), dim=1)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 107 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 108 | 
         
            +
                    x = self.relu(x)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                    return self.dropout(x)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            ##################### Deformable
         
     | 
| 114 | 
         
            +
            class _ASPPModuleDeformable(nn.Module):
         
     | 
| 115 | 
         
            +
                def __init__(self, in_channels, planes, kernel_size, padding):
         
     | 
| 116 | 
         
            +
                    super(_ASPPModuleDeformable, self).__init__()
         
     | 
| 117 | 
         
            +
                    self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
         
     | 
| 118 | 
         
            +
                                                        stride=1, padding=padding, bias=False)
         
     | 
| 119 | 
         
            +
                    self.bn = nn.BatchNorm2d(planes)
         
     | 
| 120 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                def forward(self, x):
         
     | 
| 123 | 
         
            +
                    x = self.atrous_conv(x)
         
     | 
| 124 | 
         
            +
                    x = self.bn(x)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    return self.relu(x)
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
            class ASPPDeformable(nn.Module):
         
     | 
| 130 | 
         
            +
                def __init__(self, in_channels, out_channels=None, num_parallel_block=1):
         
     | 
| 131 | 
         
            +
                    super(ASPPDeformable, self).__init__()
         
     | 
| 132 | 
         
            +
                    self.down_scale = 1
         
     | 
| 133 | 
         
            +
                    if out_channels is None:
         
     | 
| 134 | 
         
            +
                        out_channels = in_channels
         
     | 
| 135 | 
         
            +
                    self.in_channelster = 256 // self.down_scale
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
         
     | 
| 138 | 
         
            +
                    self.aspp_deforms = nn.ModuleList([
         
     | 
| 139 | 
         
            +
                        _ASPPModuleDeformable(in_channels, self.in_channelster, 3, padding=1) for _ in range(num_parallel_block)
         
     | 
| 140 | 
         
            +
                    ])
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
         
     | 
| 143 | 
         
            +
                                                         nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
         
     | 
| 144 | 
         
            +
                                                         nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
         
     | 
| 145 | 
         
            +
                                                         nn.ReLU(inplace=True))
         
     | 
| 146 | 
         
            +
                    self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
         
     | 
| 147 | 
         
            +
                    self.bn1 = nn.BatchNorm2d(out_channels)
         
     | 
| 148 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 149 | 
         
            +
                    self.dropout = nn.Dropout(0.5)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                def forward(self, x):
         
     | 
| 152 | 
         
            +
                    x1 = self.aspp1(x)
         
     | 
| 153 | 
         
            +
                    x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
         
     | 
| 154 | 
         
            +
                    x5 = self.global_avg_pool(x)
         
     | 
| 155 | 
         
            +
                    x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
         
     | 
| 156 | 
         
            +
                    x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 159 | 
         
            +
                    x = self.bn1(x)
         
     | 
| 160 | 
         
            +
                    x = self.relu(x)
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    return self.dropout(x)
         
     | 
    	
        modules/attentions.py
    ADDED
    
    | 
         @@ -0,0 +1,93 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            from torch import nn
         
     | 
| 4 | 
         
            +
            from torch.nn import init
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            class SEWeightModule(nn.Module):
         
     | 
| 8 | 
         
            +
                def __init__(self, channels, reduction=16):
         
     | 
| 9 | 
         
            +
                    super(SEWeightModule, self).__init__()
         
     | 
| 10 | 
         
            +
                    self.avg_pool = nn.AdaptiveAvgPool2d(1)
         
     | 
| 11 | 
         
            +
                    self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)
         
     | 
| 12 | 
         
            +
                    self.relu = nn.ReLU(inplace=True)
         
     | 
| 13 | 
         
            +
                    self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)
         
     | 
| 14 | 
         
            +
                    self.sigmoid = nn.Sigmoid()
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                def forward(self, x):
         
     | 
| 17 | 
         
            +
                    out = self.avg_pool(x)
         
     | 
| 18 | 
         
            +
                    out = self.fc1(out)
         
     | 
| 19 | 
         
            +
                    out = self.relu(out)
         
     | 
| 20 | 
         
            +
                    out = self.fc2(out)
         
     | 
| 21 | 
         
            +
                    weight = self.sigmoid(out)
         
     | 
| 22 | 
         
            +
                    return weight
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            class PSA(nn.Module):
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                def __init__(self, in_channels, S=4, reduction=4):
         
     | 
| 28 | 
         
            +
                    super().__init__()
         
     | 
| 29 | 
         
            +
                    self.S = S
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    _convs = []
         
     | 
| 32 | 
         
            +
                    for i in range(S):
         
     | 
| 33 | 
         
            +
                        _convs.append(nn.Conv2d(in_channels//S, in_channels//S, kernel_size=2*(i+1)+1, padding=i+1))
         
     | 
| 34 | 
         
            +
                    self.convs = nn.ModuleList(_convs)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    self.se_block = SEWeightModule(in_channels//S, reduction=S*reduction)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    self.softmax = nn.Softmax(dim=1)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                def forward(self, x):
         
     | 
| 41 | 
         
            +
                    b, c, h, w = x.size()
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    # Step1: SPC module
         
     | 
| 44 | 
         
            +
                    SPC_out = x.view(b, self.S, c//self.S, h, w) #bs,s,ci,h,w
         
     | 
| 45 | 
         
            +
                    for idx, conv in enumerate(self.convs):
         
     | 
| 46 | 
         
            +
                        SPC_out[:,idx,:,:,:] = conv(SPC_out[:,idx,:,:,:].clone())
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    # Step2: SE weight
         
     | 
| 49 | 
         
            +
                    se_out=[]
         
     | 
| 50 | 
         
            +
                    for idx in range(self.S):
         
     | 
| 51 | 
         
            +
                        se_out.append(self.se_block(SPC_out[:, idx, :, :, :]))
         
     | 
| 52 | 
         
            +
                    SE_out = torch.stack(se_out, dim=1)
         
     | 
| 53 | 
         
            +
                    SE_out = SE_out.expand_as(SPC_out)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # Step3: Softmax
         
     | 
| 56 | 
         
            +
                    softmax_out = self.softmax(SE_out)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    # Step4: SPA
         
     | 
| 59 | 
         
            +
                    PSA_out = SPC_out * softmax_out
         
     | 
| 60 | 
         
            +
                    PSA_out = PSA_out.view(b, -1, h, w)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    return PSA_out
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            class SGE(nn.Module):
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                def __init__(self, groups):
         
     | 
| 68 | 
         
            +
                    super().__init__()
         
     | 
| 69 | 
         
            +
                    self.groups=groups
         
     | 
| 70 | 
         
            +
                    self.avg_pool = nn.AdaptiveAvgPool2d(1)
         
     | 
| 71 | 
         
            +
                    self.weight=nn.Parameter(torch.zeros(1,groups,1,1))
         
     | 
| 72 | 
         
            +
                    self.bias=nn.Parameter(torch.zeros(1,groups,1,1))
         
     | 
| 73 | 
         
            +
                    self.sig=nn.Sigmoid()
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                def forward(self, x):
         
     | 
| 76 | 
         
            +
                    b, c, h,w=x.shape
         
     | 
| 77 | 
         
            +
                    x=x.view(b*self.groups,-1,h,w) #bs*g,dim//g,h,w
         
     | 
| 78 | 
         
            +
                    xn=x*self.avg_pool(x) #bs*g,dim//g,h,w
         
     | 
| 79 | 
         
            +
                    xn=xn.sum(dim=1,keepdim=True) #bs*g,1,h,w
         
     | 
| 80 | 
         
            +
                    t=xn.view(b*self.groups,-1) #bs*g,h*w
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    t=t-t.mean(dim=1,keepdim=True) #bs*g,h*w
         
     | 
| 83 | 
         
            +
                    std=t.std(dim=1,keepdim=True)+1e-5
         
     | 
| 84 | 
         
            +
                    t=t/std #bs*g,h*w
         
     | 
| 85 | 
         
            +
                    t=t.view(b,self.groups,h,w) #bs,g,h*w
         
     | 
| 86 | 
         
            +
                    
         
     | 
| 87 | 
         
            +
                    t=t*self.weight+self.bias #bs,g,h*w
         
     | 
| 88 | 
         
            +
                    t=t.view(b*self.groups,1,h,w) #bs*g,1,h*w
         
     | 
| 89 | 
         
            +
                    x=x*self.sig(t)
         
     | 
| 90 | 
         
            +
                    x=x.view(b,c,h,w)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    return x 
         
     | 
| 93 | 
         
            +
             
     | 
    	
        modules/decoder_blocks.py
    ADDED
    
    | 
         @@ -0,0 +1,101 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from models.modules.aspp import ASPP, ASPPDeformable
         
     | 
| 4 | 
         
            +
            from models.modules.attentions import PSA, SGE
         
     | 
| 5 | 
         
            +
            from config import Config
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            config = Config()
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class BasicDecBlk(nn.Module):
         
     | 
| 12 | 
         
            +
                def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
         
     | 
| 13 | 
         
            +
                    super(BasicDecBlk, self).__init__()
         
     | 
| 14 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 15 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
         
     | 
| 16 | 
         
            +
                    self.relu_in = nn.ReLU(inplace=True)
         
     | 
| 17 | 
         
            +
                    if config.dec_att == 'ASPP':
         
     | 
| 18 | 
         
            +
                        self.dec_att = ASPP(in_channels=inter_channels)
         
     | 
| 19 | 
         
            +
                    elif config.dec_att == 'ASPPDeformable':
         
     | 
| 20 | 
         
            +
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         
     | 
| 21 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         
     | 
| 22 | 
         
            +
                    self.bn_in = nn.BatchNorm2d(inter_channels)
         
     | 
| 23 | 
         
            +
                    self.bn_out = nn.BatchNorm2d(out_channels)
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                def forward(self, x):
         
     | 
| 26 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 27 | 
         
            +
                    x = self.bn_in(x)
         
     | 
| 28 | 
         
            +
                    x = self.relu_in(x)
         
     | 
| 29 | 
         
            +
                    if hasattr(self, 'dec_att'):
         
     | 
| 30 | 
         
            +
                        x = self.dec_att(x)
         
     | 
| 31 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 32 | 
         
            +
                    x = self.bn_out(x)
         
     | 
| 33 | 
         
            +
                    return x
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            class ResBlk(nn.Module):
         
     | 
| 37 | 
         
            +
                def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
         
     | 
| 38 | 
         
            +
                    super(ResBlk, self).__init__()
         
     | 
| 39 | 
         
            +
                    if out_channels is None:
         
     | 
| 40 | 
         
            +
                        out_channels = in_channels
         
     | 
| 41 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
         
     | 
| 44 | 
         
            +
                    self.bn_in = nn.BatchNorm2d(inter_channels)
         
     | 
| 45 | 
         
            +
                    self.relu_in = nn.ReLU(inplace=True)
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                    if config.dec_att == 'ASPP':
         
     | 
| 48 | 
         
            +
                        self.dec_att = ASPP(in_channels=inter_channels)
         
     | 
| 49 | 
         
            +
                    elif config.dec_att == 'ASPPDeformable':
         
     | 
| 50 | 
         
            +
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
         
     | 
| 53 | 
         
            +
                    self.bn_out = nn.BatchNorm2d(out_channels)
         
     | 
| 54 | 
         
            +
                    
         
     | 
| 55 | 
         
            +
                    self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                def forward(self, x):
         
     | 
| 58 | 
         
            +
                    _x = self.conv_resi(x)
         
     | 
| 59 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 60 | 
         
            +
                    x = self.bn_in(x)
         
     | 
| 61 | 
         
            +
                    x = self.relu_in(x)
         
     | 
| 62 | 
         
            +
                    if hasattr(self, 'dec_att'):
         
     | 
| 63 | 
         
            +
                        x = self.dec_att(x)
         
     | 
| 64 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 65 | 
         
            +
                    x = self.bn_out(x)
         
     | 
| 66 | 
         
            +
                    return x + _x
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            class HierarAttDecBlk(nn.Module):
         
     | 
| 70 | 
         
            +
                def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
         
     | 
| 71 | 
         
            +
                    super(HierarAttDecBlk, self).__init__()
         
     | 
| 72 | 
         
            +
                    if out_channels is None:
         
     | 
| 73 | 
         
            +
                        out_channels = in_channels
         
     | 
| 74 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 75 | 
         
            +
                    self.split_y = 8     # must be divided by channels of all intermediate features
         
     | 
| 76 | 
         
            +
                    self.split_x = 8
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                    self.psa = PSA(inter_channels*self.split_y*self.split_x, S=config.batch_size)
         
     | 
| 81 | 
         
            +
                    self.sge = SGE(groups=config.batch_size)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                    if config.dec_att == 'ASPP':
         
     | 
| 84 | 
         
            +
                        self.dec_att = ASPP(in_channels=inter_channels)
         
     | 
| 85 | 
         
            +
                    elif config.dec_att == 'ASPPDeformable':
         
     | 
| 86 | 
         
            +
                        self.dec_att = ASPPDeformable(in_channels=inter_channels)
         
     | 
| 87 | 
         
            +
                    self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                def forward(self, x):
         
     | 
| 90 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 91 | 
         
            +
                    N, C, H, W = x.shape
         
     | 
| 92 | 
         
            +
                    x_patchs = x.reshape(N, -1, H//self.split_y, W//self.split_x)
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                    # Hierarchical attention: group attention X patch spatial attention
         
     | 
| 95 | 
         
            +
                    x_patchs = self.psa(x_patchs)   # Group Channel Attention -- each group is a single image
         
     | 
| 96 | 
         
            +
                    x_patchs = self.sge(x_patchs)   # Patch Spatial Attention
         
     | 
| 97 | 
         
            +
                    x = x.reshape(N, C, H, W)
         
     | 
| 98 | 
         
            +
                    if hasattr(self, 'dec_att'):
         
     | 
| 99 | 
         
            +
                        x = self.dec_att(x)
         
     | 
| 100 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 101 | 
         
            +
                    return x
         
     | 
    	
        modules/deform_conv.py
    ADDED
    
    | 
         @@ -0,0 +1,66 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from torchvision.ops import deform_conv2d
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            class DeformableConv2d(nn.Module):
         
     | 
| 7 | 
         
            +
                def __init__(self,
         
     | 
| 8 | 
         
            +
                             in_channels,
         
     | 
| 9 | 
         
            +
                             out_channels,
         
     | 
| 10 | 
         
            +
                             kernel_size=3,
         
     | 
| 11 | 
         
            +
                             stride=1,
         
     | 
| 12 | 
         
            +
                             padding=1,
         
     | 
| 13 | 
         
            +
                             bias=False):
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                    super(DeformableConv2d, self).__init__()
         
     | 
| 16 | 
         
            +
                    
         
     | 
| 17 | 
         
            +
                    assert type(kernel_size) == tuple or type(kernel_size) == int
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                    kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
         
     | 
| 20 | 
         
            +
                    self.stride = stride if type(stride) == tuple else (stride, stride)
         
     | 
| 21 | 
         
            +
                    self.padding = padding
         
     | 
| 22 | 
         
            +
                    
         
     | 
| 23 | 
         
            +
                    self.offset_conv = nn.Conv2d(in_channels,
         
     | 
| 24 | 
         
            +
                                                 2 * kernel_size[0] * kernel_size[1],
         
     | 
| 25 | 
         
            +
                                                 kernel_size=kernel_size,
         
     | 
| 26 | 
         
            +
                                                 stride=stride,
         
     | 
| 27 | 
         
            +
                                                 padding=self.padding,
         
     | 
| 28 | 
         
            +
                                                 bias=True)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    nn.init.constant_(self.offset_conv.weight, 0.)
         
     | 
| 31 | 
         
            +
                    nn.init.constant_(self.offset_conv.bias, 0.)
         
     | 
| 32 | 
         
            +
                    
         
     | 
| 33 | 
         
            +
                    self.modulator_conv = nn.Conv2d(in_channels,
         
     | 
| 34 | 
         
            +
                                                 1 * kernel_size[0] * kernel_size[1],
         
     | 
| 35 | 
         
            +
                                                 kernel_size=kernel_size,
         
     | 
| 36 | 
         
            +
                                                 stride=stride,
         
     | 
| 37 | 
         
            +
                                                 padding=self.padding,
         
     | 
| 38 | 
         
            +
                                                 bias=True)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                    nn.init.constant_(self.modulator_conv.weight, 0.)
         
     | 
| 41 | 
         
            +
                    nn.init.constant_(self.modulator_conv.bias, 0.)
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    self.regular_conv = nn.Conv2d(in_channels,
         
     | 
| 44 | 
         
            +
                                                  out_channels=out_channels,
         
     | 
| 45 | 
         
            +
                                                  kernel_size=kernel_size,
         
     | 
| 46 | 
         
            +
                                                  stride=stride,
         
     | 
| 47 | 
         
            +
                                                  padding=self.padding,
         
     | 
| 48 | 
         
            +
                                                  bias=bias)
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def forward(self, x):
         
     | 
| 51 | 
         
            +
                    #h, w = x.shape[2:]
         
     | 
| 52 | 
         
            +
                    #max_offset = max(h, w)/4.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                    offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
         
     | 
| 55 | 
         
            +
                    modulator = 2. * torch.sigmoid(self.modulator_conv(x))
         
     | 
| 56 | 
         
            +
                    
         
     | 
| 57 | 
         
            +
                    x = deform_conv2d(
         
     | 
| 58 | 
         
            +
                        input=x,
         
     | 
| 59 | 
         
            +
                        offset=offset,
         
     | 
| 60 | 
         
            +
                        weight=self.regular_conv.weight,
         
     | 
| 61 | 
         
            +
                        bias=self.regular_conv.bias,
         
     | 
| 62 | 
         
            +
                        padding=self.padding,
         
     | 
| 63 | 
         
            +
                        mask=modulator,
         
     | 
| 64 | 
         
            +
                        stride=self.stride,
         
     | 
| 65 | 
         
            +
                    )
         
     | 
| 66 | 
         
            +
                    return x
         
     | 
    	
        modules/ing.py
    ADDED
    
    | 
         @@ -0,0 +1,29 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch.nn as nn
         
     | 
| 2 | 
         
            +
            from models.modules.mlp import MLPLayer
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class BlockA(nn.Module):
         
     | 
| 6 | 
         
            +
                def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.):
         
     | 
| 7 | 
         
            +
                    super(BlockA, self).__init__()
         
     | 
| 8 | 
         
            +
                    inter_channels = in_channels
         
     | 
| 9 | 
         
            +
                    self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
         
     | 
| 10 | 
         
            +
                    self.norm1 = nn.LayerNorm(inter_channels)
         
     | 
| 11 | 
         
            +
                    self.ffn = MLPLayer(in_features=inter_channels,
         
     | 
| 12 | 
         
            +
                                        hidden_features=int(inter_channels * mlp_ratio),
         
     | 
| 13 | 
         
            +
                                        act_layer=nn.GELU,
         
     | 
| 14 | 
         
            +
                                        drop=0.)
         
     | 
| 15 | 
         
            +
                    self.norm2 = nn.LayerNorm(inter_channels)
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def forward(self, x):
         
     | 
| 18 | 
         
            +
                    B, C, H, W = x.shape
         
     | 
| 19 | 
         
            +
                    _x = self.conv(x)
         
     | 
| 20 | 
         
            +
                    _x = _x.flatten(2).transpose(1, 2)
         
     | 
| 21 | 
         
            +
                    _x = self.norm1(_x)
         
     | 
| 22 | 
         
            +
                    x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                    x = x + _x
         
     | 
| 25 | 
         
            +
                    _x1 = self.ffn(x)
         
     | 
| 26 | 
         
            +
                    _x1 = self.norm2(_x1)
         
     | 
| 27 | 
         
            +
                    _x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
         
     | 
| 28 | 
         
            +
                    x = x + _x1
         
     | 
| 29 | 
         
            +
                    return x
         
     | 
    	
        modules/lateral_blocks.py
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import torch
         
     | 
| 3 | 
         
            +
            import torch.nn as nn
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from functools import partial
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            from config import Config
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            config = Config()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class BasicLatBlk(nn.Module):
         
     | 
| 14 | 
         
            +
                def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
         
     | 
| 15 | 
         
            +
                    super(BasicLatBlk, self).__init__()
         
     | 
| 16 | 
         
            +
                    inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
         
     | 
| 17 | 
         
            +
                    self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                def forward(self, x):
         
     | 
| 20 | 
         
            +
                    x = self.conv(x)
         
     | 
| 21 | 
         
            +
                    return x
         
     | 
    	
        modules/mlp.py
    ADDED
    
    | 
         @@ -0,0 +1,118 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from functools import partial
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from timm.models.layers import DropPath, to_2tuple, trunc_normal_
         
     | 
| 6 | 
         
            +
            from timm.models.registry import register_model
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import math
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class MLPLayer(nn.Module):
         
     | 
| 12 | 
         
            +
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         
     | 
| 13 | 
         
            +
                    super().__init__()
         
     | 
| 14 | 
         
            +
                    out_features = out_features or in_features
         
     | 
| 15 | 
         
            +
                    hidden_features = hidden_features or in_features
         
     | 
| 16 | 
         
            +
                    self.fc1 = nn.Linear(in_features, hidden_features)
         
     | 
| 17 | 
         
            +
                    self.act = act_layer()
         
     | 
| 18 | 
         
            +
                    self.fc2 = nn.Linear(hidden_features, out_features)
         
     | 
| 19 | 
         
            +
                    self.drop = nn.Dropout(drop)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                def forward(self, x):
         
     | 
| 22 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 23 | 
         
            +
                    x = self.act(x)
         
     | 
| 24 | 
         
            +
                    x = self.drop(x)
         
     | 
| 25 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 26 | 
         
            +
                    x = self.drop(x)
         
     | 
| 27 | 
         
            +
                    return x
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            class Attention(nn.Module):
         
     | 
| 31 | 
         
            +
                def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
         
     | 
| 32 | 
         
            +
                    super().__init__()
         
     | 
| 33 | 
         
            +
                    assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                    self.dim = dim
         
     | 
| 36 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 37 | 
         
            +
                    head_dim = dim // num_heads
         
     | 
| 38 | 
         
            +
                    self.scale = qk_scale or head_dim ** -0.5
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                    self.q = nn.Linear(dim, dim, bias=qkv_bias)
         
     | 
| 41 | 
         
            +
                    self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
         
     | 
| 42 | 
         
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         
     | 
| 43 | 
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 44 | 
         
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    self.sr_ratio = sr_ratio
         
     | 
| 47 | 
         
            +
                    if sr_ratio > 1:
         
     | 
| 48 | 
         
            +
                        self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
         
     | 
| 49 | 
         
            +
                        self.norm = nn.LayerNorm(dim)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 52 | 
         
            +
                    B, N, C = x.shape
         
     | 
| 53 | 
         
            +
                    q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    if self.sr_ratio > 1:
         
     | 
| 56 | 
         
            +
                        x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
         
     | 
| 57 | 
         
            +
                        x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
         
     | 
| 58 | 
         
            +
                        x_ = self.norm(x_)
         
     | 
| 59 | 
         
            +
                        kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 60 | 
         
            +
                    else:
         
     | 
| 61 | 
         
            +
                        kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 62 | 
         
            +
                    k, v = kv[0], kv[1]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    attn = (q @ k.transpose(-2, -1)) * self.scale
         
     | 
| 65 | 
         
            +
                    attn = attn.softmax(dim=-1)
         
     | 
| 66 | 
         
            +
                    attn = self.attn_drop(attn)
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         
     | 
| 69 | 
         
            +
                    x = self.proj(x)
         
     | 
| 70 | 
         
            +
                    x = self.proj_drop(x)
         
     | 
| 71 | 
         
            +
                    return x
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            class Block(nn.Module):
         
     | 
| 75 | 
         
            +
                def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
         
     | 
| 76 | 
         
            +
                             drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
         
     | 
| 77 | 
         
            +
                    super().__init__()
         
     | 
| 78 | 
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 79 | 
         
            +
                    self.attn = Attention(
         
     | 
| 80 | 
         
            +
                        dim,
         
     | 
| 81 | 
         
            +
                        num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 82 | 
         
            +
                        attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
         
     | 
| 83 | 
         
            +
                    # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
         
     | 
| 84 | 
         
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         
     | 
| 85 | 
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 86 | 
         
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 87 | 
         
            +
                    self.mlp = MLPLayer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                def forward(self, x, H, W):
         
     | 
| 90 | 
         
            +
                    x = x + self.drop_path(self.attn(self.norm1(x), H, W))
         
     | 
| 91 | 
         
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
         
     | 
| 92 | 
         
            +
                    return x
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            class OverlapPatchEmbed(nn.Module):
         
     | 
| 96 | 
         
            +
                """ Image to Patch Embedding
         
     | 
| 97 | 
         
            +
                """
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
         
     | 
| 100 | 
         
            +
                    super().__init__()
         
     | 
| 101 | 
         
            +
                    img_size = to_2tuple(img_size)
         
     | 
| 102 | 
         
            +
                    patch_size = to_2tuple(patch_size)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    self.img_size = img_size
         
     | 
| 105 | 
         
            +
                    self.patch_size = patch_size
         
     | 
| 106 | 
         
            +
                    self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
         
     | 
| 107 | 
         
            +
                    self.num_patches = self.H * self.W
         
     | 
| 108 | 
         
            +
                    self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
         
     | 
| 109 | 
         
            +
                                          padding=(patch_size[0] // 2, patch_size[1] // 2))
         
     | 
| 110 | 
         
            +
                    self.norm = nn.LayerNorm(embed_dim)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                def forward(self, x):
         
     | 
| 113 | 
         
            +
                    x = self.proj(x)
         
     | 
| 114 | 
         
            +
                    _, _, H, W = x.shape
         
     | 
| 115 | 
         
            +
                    x = x.flatten(2).transpose(1, 2)
         
     | 
| 116 | 
         
            +
                    x = self.norm(x)
         
     | 
| 117 | 
         
            +
                    return x, H, W
         
     | 
| 118 | 
         
            +
             
     | 
    	
        modules/utils.py
    ADDED
    
    | 
         @@ -0,0 +1,54 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch.nn as nn
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            def build_act_layer(act_layer):
         
     | 
| 5 | 
         
            +
                if act_layer == 'ReLU':
         
     | 
| 6 | 
         
            +
                    return nn.ReLU(inplace=True)
         
     | 
| 7 | 
         
            +
                elif act_layer == 'SiLU':
         
     | 
| 8 | 
         
            +
                    return nn.SiLU(inplace=True)
         
     | 
| 9 | 
         
            +
                elif act_layer == 'GELU':
         
     | 
| 10 | 
         
            +
                    return nn.GELU()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
                raise NotImplementedError(f'build_act_layer does not support {act_layer}')
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def build_norm_layer(dim,
         
     | 
| 16 | 
         
            +
                                 norm_layer,
         
     | 
| 17 | 
         
            +
                                 in_format='channels_last',
         
     | 
| 18 | 
         
            +
                                 out_format='channels_last',
         
     | 
| 19 | 
         
            +
                                 eps=1e-6):
         
     | 
| 20 | 
         
            +
                layers = []
         
     | 
| 21 | 
         
            +
                if norm_layer == 'BN':
         
     | 
| 22 | 
         
            +
                    if in_format == 'channels_last':
         
     | 
| 23 | 
         
            +
                        layers.append(to_channels_first())
         
     | 
| 24 | 
         
            +
                    layers.append(nn.BatchNorm2d(dim))
         
     | 
| 25 | 
         
            +
                    if out_format == 'channels_last':
         
     | 
| 26 | 
         
            +
                        layers.append(to_channels_last())
         
     | 
| 27 | 
         
            +
                elif norm_layer == 'LN':
         
     | 
| 28 | 
         
            +
                    if in_format == 'channels_first':
         
     | 
| 29 | 
         
            +
                        layers.append(to_channels_last())
         
     | 
| 30 | 
         
            +
                    layers.append(nn.LayerNorm(dim, eps=eps))
         
     | 
| 31 | 
         
            +
                    if out_format == 'channels_first':
         
     | 
| 32 | 
         
            +
                        layers.append(to_channels_first())
         
     | 
| 33 | 
         
            +
                else:
         
     | 
| 34 | 
         
            +
                    raise NotImplementedError(
         
     | 
| 35 | 
         
            +
                        f'build_norm_layer does not support {norm_layer}')
         
     | 
| 36 | 
         
            +
                return nn.Sequential(*layers)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            class to_channels_first(nn.Module):
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                def __init__(self):
         
     | 
| 42 | 
         
            +
                    super().__init__()
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def forward(self, x):
         
     | 
| 45 | 
         
            +
                    return x.permute(0, 3, 1, 2)
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            class to_channels_last(nn.Module):
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def __init__(self):
         
     | 
| 51 | 
         
            +
                    super().__init__()
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def forward(self, x):
         
     | 
| 54 | 
         
            +
                    return x.permute(0, 2, 3, 1)
         
     | 
    	
        preproc.py
    ADDED
    
    | 
         @@ -0,0 +1,85 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from PIL import Image, ImageEnhance
         
     | 
| 2 | 
         
            +
            import random
         
     | 
| 3 | 
         
            +
            import numpy as np
         
     | 
| 4 | 
         
            +
            import random
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            def preproc(image, label, preproc_methods=['flip']):
         
     | 
| 8 | 
         
            +
                if 'flip' in preproc_methods:
         
     | 
| 9 | 
         
            +
                    image, label = cv_random_flip(image, label)
         
     | 
| 10 | 
         
            +
                if 'crop' in preproc_methods:
         
     | 
| 11 | 
         
            +
                    image, label = random_crop(image, label)
         
     | 
| 12 | 
         
            +
                if 'rotate' in preproc_methods:
         
     | 
| 13 | 
         
            +
                    image, label = random_rotate(image, label)
         
     | 
| 14 | 
         
            +
                if 'enhance' in preproc_methods:
         
     | 
| 15 | 
         
            +
                    image = color_enhance(image)
         
     | 
| 16 | 
         
            +
                if 'pepper' in preproc_methods:
         
     | 
| 17 | 
         
            +
                    label = random_pepper(label)
         
     | 
| 18 | 
         
            +
                return image, label
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            def cv_random_flip(img, label):
         
     | 
| 22 | 
         
            +
                if random.random() > 0.5:
         
     | 
| 23 | 
         
            +
                    img = img.transpose(Image.FLIP_LEFT_RIGHT)
         
     | 
| 24 | 
         
            +
                    label = label.transpose(Image.FLIP_LEFT_RIGHT)
         
     | 
| 25 | 
         
            +
                return img, label
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            def random_crop(image, label):
         
     | 
| 29 | 
         
            +
                border = 30
         
     | 
| 30 | 
         
            +
                image_width = image.size[0]
         
     | 
| 31 | 
         
            +
                image_height = image.size[1]
         
     | 
| 32 | 
         
            +
                border = int(min(image_width, image_height) * 0.1)
         
     | 
| 33 | 
         
            +
                crop_win_width = np.random.randint(image_width - border, image_width)
         
     | 
| 34 | 
         
            +
                crop_win_height = np.random.randint(image_height - border, image_height)
         
     | 
| 35 | 
         
            +
                random_region = (
         
     | 
| 36 | 
         
            +
                    (image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
         
     | 
| 37 | 
         
            +
                    (image_height + crop_win_height) >> 1)
         
     | 
| 38 | 
         
            +
                return image.crop(random_region), label.crop(random_region)
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def random_rotate(image, label, angle=15):
         
     | 
| 42 | 
         
            +
                mode = Image.BICUBIC
         
     | 
| 43 | 
         
            +
                if random.random() > 0.8:
         
     | 
| 44 | 
         
            +
                    random_angle = np.random.randint(-angle, angle)
         
     | 
| 45 | 
         
            +
                    image = image.rotate(random_angle, mode)
         
     | 
| 46 | 
         
            +
                    label = label.rotate(random_angle, mode)
         
     | 
| 47 | 
         
            +
                return image, label
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            def color_enhance(image):
         
     | 
| 51 | 
         
            +
                bright_intensity = random.randint(5, 15) / 10.0
         
     | 
| 52 | 
         
            +
                image = ImageEnhance.Brightness(image).enhance(bright_intensity)
         
     | 
| 53 | 
         
            +
                contrast_intensity = random.randint(5, 15) / 10.0
         
     | 
| 54 | 
         
            +
                image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
         
     | 
| 55 | 
         
            +
                color_intensity = random.randint(0, 20) / 10.0
         
     | 
| 56 | 
         
            +
                image = ImageEnhance.Color(image).enhance(color_intensity)
         
     | 
| 57 | 
         
            +
                sharp_intensity = random.randint(0, 30) / 10.0
         
     | 
| 58 | 
         
            +
                image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
         
     | 
| 59 | 
         
            +
                return image
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            def random_gaussian(image, mean=0.1, sigma=0.35):
         
     | 
| 63 | 
         
            +
                def gaussianNoisy(im, mean=mean, sigma=sigma):
         
     | 
| 64 | 
         
            +
                    for _i in range(len(im)):
         
     | 
| 65 | 
         
            +
                        im[_i] += random.gauss(mean, sigma)
         
     | 
| 66 | 
         
            +
                    return im
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                img = np.asarray(image)
         
     | 
| 69 | 
         
            +
                width, height = img.shape
         
     | 
| 70 | 
         
            +
                img = gaussianNoisy(img[:].flatten(), mean, sigma)
         
     | 
| 71 | 
         
            +
                img = img.reshape([width, height])
         
     | 
| 72 | 
         
            +
                return Image.fromarray(np.uint8(img))
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def random_pepper(img, N=0.0015):
         
     | 
| 76 | 
         
            +
                img = np.array(img)
         
     | 
| 77 | 
         
            +
                noiseNum = int(N * img.shape[0] * img.shape[1])
         
     | 
| 78 | 
         
            +
                for i in range(noiseNum):
         
     | 
| 79 | 
         
            +
                    randX = random.randint(0, img.shape[0] - 1)
         
     | 
| 80 | 
         
            +
                    randY = random.randint(0, img.shape[1] - 1)
         
     | 
| 81 | 
         
            +
                    if random.randint(0, 1) == 0:
         
     | 
| 82 | 
         
            +
                        img[randX, randY] = 0
         
     | 
| 83 | 
         
            +
                    else:
         
     | 
| 84 | 
         
            +
                        img[randX, randY] = 255
         
     | 
| 85 | 
         
            +
                return Image.fromarray(img)
         
     | 
    	
        refinement/refiner.py
    ADDED
    
    | 
         @@ -0,0 +1,253 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            from collections import OrderedDict
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            import torch.nn as nn
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
            from torchvision.models import vgg16, vgg16_bn
         
     | 
| 8 | 
         
            +
            from torchvision.models import resnet50
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from config import Config
         
     | 
| 11 | 
         
            +
            from dataset import class_labels_TR_sorted
         
     | 
| 12 | 
         
            +
            from models.backbones.build_backbone import build_backbone
         
     | 
| 13 | 
         
            +
            from models.modules.decoder_blocks import BasicDecBlk
         
     | 
| 14 | 
         
            +
            from models.modules.lateral_blocks import BasicLatBlk
         
     | 
| 15 | 
         
            +
            from models.modules.ing import *
         
     | 
| 16 | 
         
            +
            from models.refinement.stem_layer import StemLayer
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            class RefinerPVTInChannels4(nn.Module):
         
     | 
| 20 | 
         
            +
                def __init__(self, in_channels=3+1):
         
     | 
| 21 | 
         
            +
                    super(RefinerPVTInChannels4, self).__init__()
         
     | 
| 22 | 
         
            +
                    self.config = Config()
         
     | 
| 23 | 
         
            +
                    self.epoch = 1
         
     | 
| 24 | 
         
            +
                    self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                    lateral_channels_in_collection = {
         
     | 
| 27 | 
         
            +
                        'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
         
     | 
| 28 | 
         
            +
                        'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
         
     | 
| 29 | 
         
            +
                        'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
         
     | 
| 30 | 
         
            +
                    }
         
     | 
| 31 | 
         
            +
                    channels = lateral_channels_in_collection[self.config.bb]
         
     | 
| 32 | 
         
            +
                    self.squeeze_module = BasicDecBlk(channels[0], channels[0])
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    self.decoder = Decoder(channels)
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    if 0:
         
     | 
| 37 | 
         
            +
                        for key, value in self.named_parameters():
         
     | 
| 38 | 
         
            +
                            if 'bb.' in key:
         
     | 
| 39 | 
         
            +
                                value.requires_grad = False
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                def forward(self, x):
         
     | 
| 42 | 
         
            +
                    if isinstance(x, list):
         
     | 
| 43 | 
         
            +
                        x = torch.cat(x, dim=1)
         
     | 
| 44 | 
         
            +
                    ########## Encoder ##########
         
     | 
| 45 | 
         
            +
                    if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
         
     | 
| 46 | 
         
            +
                        x1 = self.bb.conv1(x)
         
     | 
| 47 | 
         
            +
                        x2 = self.bb.conv2(x1)
         
     | 
| 48 | 
         
            +
                        x3 = self.bb.conv3(x2)
         
     | 
| 49 | 
         
            +
                        x4 = self.bb.conv4(x3)
         
     | 
| 50 | 
         
            +
                    else:
         
     | 
| 51 | 
         
            +
                        x1, x2, x3, x4 = self.bb(x)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    x4 = self.squeeze_module(x4)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    ########## Decoder ##########
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    features = [x, x1, x2, x3, x4]
         
     | 
| 58 | 
         
            +
                    scaled_preds = self.decoder(features)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    return scaled_preds
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            class Refiner(nn.Module):
         
     | 
| 64 | 
         
            +
                def __init__(self, in_channels=3+1):
         
     | 
| 65 | 
         
            +
                    super(Refiner, self).__init__()
         
     | 
| 66 | 
         
            +
                    self.config = Config()
         
     | 
| 67 | 
         
            +
                    self.epoch = 1
         
     | 
| 68 | 
         
            +
                    self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3)
         
     | 
| 69 | 
         
            +
                    self.bb = build_backbone(self.config.bb)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    lateral_channels_in_collection = {
         
     | 
| 72 | 
         
            +
                        'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
         
     | 
| 73 | 
         
            +
                        'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
         
     | 
| 74 | 
         
            +
                        'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
         
     | 
| 75 | 
         
            +
                    }
         
     | 
| 76 | 
         
            +
                    channels = lateral_channels_in_collection[self.config.bb]
         
     | 
| 77 | 
         
            +
                    self.squeeze_module = BasicDecBlk(channels[0], channels[0])
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    self.decoder = Decoder(channels)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    if 0:
         
     | 
| 82 | 
         
            +
                        for key, value in self.named_parameters():
         
     | 
| 83 | 
         
            +
                            if 'bb.' in key:
         
     | 
| 84 | 
         
            +
                                value.requires_grad = False
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                def forward(self, x):
         
     | 
| 87 | 
         
            +
                    if isinstance(x, list):
         
     | 
| 88 | 
         
            +
                        x = torch.cat(x, dim=1)
         
     | 
| 89 | 
         
            +
                    x = self.stem_layer(x)
         
     | 
| 90 | 
         
            +
                    ########## Encoder ##########
         
     | 
| 91 | 
         
            +
                    if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
         
     | 
| 92 | 
         
            +
                        x1 = self.bb.conv1(x)
         
     | 
| 93 | 
         
            +
                        x2 = self.bb.conv2(x1)
         
     | 
| 94 | 
         
            +
                        x3 = self.bb.conv3(x2)
         
     | 
| 95 | 
         
            +
                        x4 = self.bb.conv4(x3)
         
     | 
| 96 | 
         
            +
                    else:
         
     | 
| 97 | 
         
            +
                        x1, x2, x3, x4 = self.bb(x)
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    x4 = self.squeeze_module(x4)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    ########## Decoder ##########
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    features = [x, x1, x2, x3, x4]
         
     | 
| 104 | 
         
            +
                    scaled_preds = self.decoder(features)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    return scaled_preds
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 110 | 
         
            +
                def __init__(self, channels):
         
     | 
| 111 | 
         
            +
                    super(Decoder, self).__init__()
         
     | 
| 112 | 
         
            +
                    self.config = Config()
         
     | 
| 113 | 
         
            +
                    DecoderBlock = eval('BasicDecBlk')
         
     | 
| 114 | 
         
            +
                    LateralBlock = eval('BasicLatBlk')
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    self.decoder_block4 = DecoderBlock(channels[0], channels[1])
         
     | 
| 117 | 
         
            +
                    self.decoder_block3 = DecoderBlock(channels[1], channels[2])
         
     | 
| 118 | 
         
            +
                    self.decoder_block2 = DecoderBlock(channels[2], channels[3])
         
     | 
| 119 | 
         
            +
                    self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                    self.lateral_block4 = LateralBlock(channels[1], channels[1])
         
     | 
| 122 | 
         
            +
                    self.lateral_block3 = LateralBlock(channels[2], channels[2])
         
     | 
| 123 | 
         
            +
                    self.lateral_block2 = LateralBlock(channels[3], channels[3])
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 126 | 
         
            +
                        self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
         
     | 
| 127 | 
         
            +
                        self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
         
     | 
| 128 | 
         
            +
                        self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
         
     | 
| 129 | 
         
            +
                    self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                def forward(self, features):
         
     | 
| 132 | 
         
            +
                    x, x1, x2, x3, x4 = features
         
     | 
| 133 | 
         
            +
                    outs = []
         
     | 
| 134 | 
         
            +
                    p4 = self.decoder_block4(x4)
         
     | 
| 135 | 
         
            +
                    _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 136 | 
         
            +
                    _p3 = _p4 + self.lateral_block4(x3)
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    p3 = self.decoder_block3(_p3)
         
     | 
| 139 | 
         
            +
                    _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 140 | 
         
            +
                    _p2 = _p3 + self.lateral_block3(x2)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    p2 = self.decoder_block2(_p2)
         
     | 
| 143 | 
         
            +
                    _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 144 | 
         
            +
                    _p1 = _p2 + self.lateral_block2(x1)
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    _p1 = self.decoder_block1(_p1)
         
     | 
| 147 | 
         
            +
                    _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
         
     | 
| 148 | 
         
            +
                    p1_out = self.conv_out1(_p1)
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    if self.config.ms_supervision:
         
     | 
| 151 | 
         
            +
                        outs.append(self.conv_ms_spvn_4(p4))
         
     | 
| 152 | 
         
            +
                        outs.append(self.conv_ms_spvn_3(p3))
         
     | 
| 153 | 
         
            +
                        outs.append(self.conv_ms_spvn_2(p2))
         
     | 
| 154 | 
         
            +
                    outs.append(p1_out)
         
     | 
| 155 | 
         
            +
                    return outs
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
            class RefUNet(nn.Module):
         
     | 
| 159 | 
         
            +
                # Refinement
         
     | 
| 160 | 
         
            +
                def __init__(self, in_channels=3+1):
         
     | 
| 161 | 
         
            +
                    super(RefUNet, self).__init__()
         
     | 
| 162 | 
         
            +
                    self.encoder_1 = nn.Sequential(
         
     | 
| 163 | 
         
            +
                        nn.Conv2d(in_channels, 64, 3, 1, 1),
         
     | 
| 164 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 165 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 166 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 167 | 
         
            +
                    )
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    self.encoder_2 = nn.Sequential(
         
     | 
| 170 | 
         
            +
                        nn.MaxPool2d(2, 2, ceil_mode=True),
         
     | 
| 171 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 172 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 173 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 174 | 
         
            +
                    )
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                    self.encoder_3 = nn.Sequential(
         
     | 
| 177 | 
         
            +
                        nn.MaxPool2d(2, 2, ceil_mode=True),
         
     | 
| 178 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 179 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 180 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 181 | 
         
            +
                    )
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    self.encoder_4 = nn.Sequential(
         
     | 
| 184 | 
         
            +
                        nn.MaxPool2d(2, 2, ceil_mode=True),
         
     | 
| 185 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 186 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 187 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 188 | 
         
            +
                    )
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
         
     | 
| 191 | 
         
            +
                    #####
         
     | 
| 192 | 
         
            +
                    self.decoder_5 = nn.Sequential(
         
     | 
| 193 | 
         
            +
                        nn.Conv2d(64, 64, 3, 1, 1),
         
     | 
| 194 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 195 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 196 | 
         
            +
                    )
         
     | 
| 197 | 
         
            +
                    #####
         
     | 
| 198 | 
         
            +
                    self.decoder_4 = nn.Sequential(
         
     | 
| 199 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 200 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 201 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 202 | 
         
            +
                    )
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    self.decoder_3 = nn.Sequential(
         
     | 
| 205 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 206 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 207 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 208 | 
         
            +
                    )
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    self.decoder_2 = nn.Sequential(
         
     | 
| 211 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 212 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 213 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 214 | 
         
            +
                    )
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    self.decoder_1 = nn.Sequential(
         
     | 
| 217 | 
         
            +
                        nn.Conv2d(128, 64, 3, 1, 1),
         
     | 
| 218 | 
         
            +
                        nn.BatchNorm2d(64),
         
     | 
| 219 | 
         
            +
                        nn.ReLU(inplace=True)
         
     | 
| 220 | 
         
            +
                    )
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                    self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                def forward(self, x):
         
     | 
| 227 | 
         
            +
                    outs = []
         
     | 
| 228 | 
         
            +
                    if isinstance(x, list):
         
     | 
| 229 | 
         
            +
                        x = torch.cat(x, dim=1)
         
     | 
| 230 | 
         
            +
                    hx = x
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    hx1 = self.encoder_1(hx)
         
     | 
| 233 | 
         
            +
                    hx2 = self.encoder_2(hx1)
         
     | 
| 234 | 
         
            +
                    hx3 = self.encoder_3(hx2)
         
     | 
| 235 | 
         
            +
                    hx4 = self.encoder_4(hx3)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    hx = self.decoder_5(self.pool4(hx4))
         
     | 
| 238 | 
         
            +
                    hx = torch.cat((self.upscore2(hx), hx4), 1)
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    d4 = self.decoder_4(hx)
         
     | 
| 241 | 
         
            +
                    hx = torch.cat((self.upscore2(d4), hx3), 1)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    d3 = self.decoder_3(hx)
         
     | 
| 244 | 
         
            +
                    hx = torch.cat((self.upscore2(d3), hx2), 1)
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                    d2 = self.decoder_2(hx)
         
     | 
| 247 | 
         
            +
                    hx = torch.cat((self.upscore2(d2), hx1), 1)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    d1 = self.decoder_1(hx)
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    x = self.conv_d0(d1)
         
     | 
| 252 | 
         
            +
                    outs.append(x)
         
     | 
| 253 | 
         
            +
                    return outs
         
     | 
    	
        refinement/stem_layer.py
    ADDED
    
    | 
         @@ -0,0 +1,45 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch.nn as nn
         
     | 
| 2 | 
         
            +
            from models.modules.utils import build_act_layer, build_norm_layer
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class StemLayer(nn.Module):
         
     | 
| 6 | 
         
            +
                r""" Stem layer of InternImage
         
     | 
| 7 | 
         
            +
                Args:
         
     | 
| 8 | 
         
            +
                    in_channels (int): number of input channels
         
     | 
| 9 | 
         
            +
                    out_channels (int): number of output channels
         
     | 
| 10 | 
         
            +
                    act_layer (str): activation layer
         
     | 
| 11 | 
         
            +
                    norm_layer (str): normalization layer
         
     | 
| 12 | 
         
            +
                """
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                def __init__(self,
         
     | 
| 15 | 
         
            +
                             in_channels=3+1,
         
     | 
| 16 | 
         
            +
                             inter_channels=48,
         
     | 
| 17 | 
         
            +
                             out_channels=96,
         
     | 
| 18 | 
         
            +
                             act_layer='GELU',
         
     | 
| 19 | 
         
            +
                             norm_layer='BN'):
         
     | 
| 20 | 
         
            +
                    super().__init__()
         
     | 
| 21 | 
         
            +
                    self.conv1 = nn.Conv2d(in_channels,
         
     | 
| 22 | 
         
            +
                                           inter_channels,
         
     | 
| 23 | 
         
            +
                                           kernel_size=3,
         
     | 
| 24 | 
         
            +
                                           stride=1,
         
     | 
| 25 | 
         
            +
                                           padding=1)
         
     | 
| 26 | 
         
            +
                    self.norm1 = build_norm_layer(
         
     | 
| 27 | 
         
            +
                        inter_channels, norm_layer, 'channels_first', 'channels_first'
         
     | 
| 28 | 
         
            +
                    )
         
     | 
| 29 | 
         
            +
                    self.act = build_act_layer(act_layer)
         
     | 
| 30 | 
         
            +
                    self.conv2 = nn.Conv2d(inter_channels,
         
     | 
| 31 | 
         
            +
                                           out_channels,
         
     | 
| 32 | 
         
            +
                                           kernel_size=3,
         
     | 
| 33 | 
         
            +
                                           stride=1,
         
     | 
| 34 | 
         
            +
                                           padding=1)
         
     | 
| 35 | 
         
            +
                    self.norm2 = build_norm_layer(
         
     | 
| 36 | 
         
            +
                        out_channels, norm_layer, 'channels_first', 'channels_first'
         
     | 
| 37 | 
         
            +
                    )
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                def forward(self, x):
         
     | 
| 40 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 41 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 42 | 
         
            +
                    x = self.act(x)
         
     | 
| 43 | 
         
            +
                    x = self.conv2(x)
         
     | 
| 44 | 
         
            +
                    x = self.norm2(x)
         
     | 
| 45 | 
         
            +
                    return x
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,11 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            --extra-index-url https://download.pytorch.org/whl/cu118
         
     | 
| 2 | 
         
            +
            torch==2.0.1
         
     | 
| 3 | 
         
            +
            --extra-index-url https://download.pytorch.org/whl/cu118
         
     | 
| 4 | 
         
            +
            torchvision==0.15.2
         
     | 
| 5 | 
         
            +
            opencv-python
         
     | 
| 6 | 
         
            +
            tqdm
         
     | 
| 7 | 
         
            +
            timm
         
     | 
| 8 | 
         
            +
            prettytable
         
     | 
| 9 | 
         
            +
            scipy
         
     | 
| 10 | 
         
            +
            scikit-image
         
     | 
| 11 | 
         
            +
            kornia
         
     |