Spaces:
Runtime error
Runtime error
MUHAMMAD YOUSAF RANA
commited on
Commit
·
947f13a
1
Parent(s):
da5c620
files added
Browse files- Dockerfile +34 -0
- main.py +116 -0
- my_lib/preproces_video.py +27 -0
- requirements.txt +12 -0
Dockerfile
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use lightweight Python image
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Install OS dependencies for PyAV and image processing
|
| 5 |
+
RUN apt-get update && apt-get install -y \
|
| 6 |
+
ffmpeg \
|
| 7 |
+
libsm6 \
|
| 8 |
+
libxext6 \
|
| 9 |
+
libgl1 \
|
| 10 |
+
git \
|
| 11 |
+
&& rm -rf /var/lib/apt/lists/*
|
| 12 |
+
|
| 13 |
+
# Create non-root user
|
| 14 |
+
RUN useradd -m -u 1000 user
|
| 15 |
+
USER user
|
| 16 |
+
|
| 17 |
+
# Set up environment and working directory
|
| 18 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
| 19 |
+
WORKDIR /app
|
| 20 |
+
|
| 21 |
+
# Install Python dependencies
|
| 22 |
+
COPY --chown=user requirements.txt requirements.txt
|
| 23 |
+
RUN pip install --no-cache-dir --upgrade pip \
|
| 24 |
+
&& pip install --no-cache-dir -r requirements.txt
|
| 25 |
+
|
| 26 |
+
# Copy application code
|
| 27 |
+
COPY --chown=user main.py /app/
|
| 28 |
+
COPY --chown=user my_lib /app/my_lib
|
| 29 |
+
|
| 30 |
+
# Required for Spaces: expose port 7860
|
| 31 |
+
EXPOSE 7860
|
| 32 |
+
|
| 33 |
+
# Run FastAPI app with Uvicorn
|
| 34 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
import traceback
|
| 4 |
+
import tempfile
|
| 5 |
+
import torch
|
| 6 |
+
# import mimetypes
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import av
|
| 9 |
+
import numpy as np
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
from transformers import LlavaNextVideoProcessor, LlavaNextVideoForConditionalGeneration
|
| 13 |
+
from my_lib.preproces_video import read_video_pyav
|
| 14 |
+
|
| 15 |
+
app = FastAPI()
|
| 16 |
+
|
| 17 |
+
# Load model and processor
|
| 18 |
+
MODEL_ID = "llava-hf/LLaVA-NeXT-Video-7B-hf"
|
| 19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 20 |
+
|
| 21 |
+
print("Loading model and processor...")
|
| 22 |
+
processor = LlavaNextVideoProcessor.from_pretrained(MODEL_ID)
|
| 23 |
+
|
| 24 |
+
# Optional: Pre-cache model on HF Spaces to avoid redownloading
|
| 25 |
+
# from huggingface_hub import snapshot_download
|
| 26 |
+
# snapshot_download(MODEL_ID)
|
| 27 |
+
|
| 28 |
+
if device.type == "cuda":
|
| 29 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
| 30 |
+
MODEL_ID,
|
| 31 |
+
torch_dtype=torch.float16,
|
| 32 |
+
low_cpu_mem_usage=True,
|
| 33 |
+
load_in_4bit=True
|
| 34 |
+
).to(device)
|
| 35 |
+
else:
|
| 36 |
+
model = LlavaNextVideoForConditionalGeneration.from_pretrained(
|
| 37 |
+
MODEL_ID,
|
| 38 |
+
torch_dtype=torch.float32
|
| 39 |
+
).to(device)
|
| 40 |
+
|
| 41 |
+
print(f"Model and processor loaded on {device}.")
|
| 42 |
+
|
| 43 |
+
@app.get("/")
|
| 44 |
+
async def root():
|
| 45 |
+
return {"message": "Welcome to the Summarization API. Use /summarize to summarize media files."}
|
| 46 |
+
|
| 47 |
+
@app.get("/health")
|
| 48 |
+
async def health():
|
| 49 |
+
return {"status": "ok", "device": device.type}
|
| 50 |
+
|
| 51 |
+
@app.post("/summarize")
|
| 52 |
+
async def summarize_media(file: UploadFile = File(...)):
|
| 53 |
+
try:
|
| 54 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=file.filename) as tmp:
|
| 55 |
+
tmp.write(await file.read())
|
| 56 |
+
tmp_path = tmp.name
|
| 57 |
+
|
| 58 |
+
content_type = file.content_type
|
| 59 |
+
is_video = content_type.startswith("video/")
|
| 60 |
+
is_image = content_type.startswith("image/")
|
| 61 |
+
|
| 62 |
+
if not (is_video or is_image):
|
| 63 |
+
os.unlink(tmp_path)
|
| 64 |
+
return JSONResponse(status_code=400, content={"error": f"Unsupported file type: {content_type}"})
|
| 65 |
+
|
| 66 |
+
if is_video:
|
| 67 |
+
container = av.open(tmp_path)
|
| 68 |
+
total_frames = container.streams.video[0].frames or sum(1 for _ in container.decode(video=0))
|
| 69 |
+
container = av.open(tmp_path) # reopen to reset position
|
| 70 |
+
|
| 71 |
+
if total_frames == 0:
|
| 72 |
+
raise ValueError("Could not extract frames: total frame count is zero.")
|
| 73 |
+
|
| 74 |
+
num_frames = min(8, total_frames)
|
| 75 |
+
indices = np.linspace(0, total_frames - 1, num_frames).astype(int)
|
| 76 |
+
clip = read_video_pyav(container, indices)
|
| 77 |
+
|
| 78 |
+
conversation = [
|
| 79 |
+
{
|
| 80 |
+
"role": "user",
|
| 81 |
+
"content": [
|
| 82 |
+
{"type": "text", "text": "Summarize this video and explain the key highlights."},
|
| 83 |
+
{"type": "video"},
|
| 84 |
+
],
|
| 85 |
+
},
|
| 86 |
+
]
|
| 87 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 88 |
+
inputs = processor(text=prompt, videos=clip, return_tensors="pt").to(device)
|
| 89 |
+
|
| 90 |
+
elif is_image:
|
| 91 |
+
image = Image.open(tmp_path).convert("RGB")
|
| 92 |
+
conversation = [
|
| 93 |
+
{
|
| 94 |
+
"role": "user",
|
| 95 |
+
"content": [
|
| 96 |
+
{"type": "text", "text": "Describe the image and summarize its content."},
|
| 97 |
+
{"type": "image"},
|
| 98 |
+
],
|
| 99 |
+
},
|
| 100 |
+
]
|
| 101 |
+
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
| 102 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
| 103 |
+
|
| 104 |
+
output_ids = model.generate(**inputs, max_new_tokens=512)
|
| 105 |
+
response_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 106 |
+
|
| 107 |
+
return JSONResponse(content={"summary": response_text})
|
| 108 |
+
|
| 109 |
+
except Exception as e:
|
| 110 |
+
print("Unhandled error:", e)
|
| 111 |
+
print(traceback.format_exc())
|
| 112 |
+
return JSONResponse(status_code=500, content={"error": str(e)})
|
| 113 |
+
|
| 114 |
+
finally:
|
| 115 |
+
if 'tmp_path' in locals() and os.path.exists(tmp_path):
|
| 116 |
+
os.unlink(tmp_path)
|
my_lib/preproces_video.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import av
|
| 2 |
+
import numpy as np
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def read_video_pyav(container, indices):
|
| 6 |
+
"""
|
| 7 |
+
Decode selected frames from a video using PyAV.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
container (av.container.input.InputContainer): The video container.
|
| 11 |
+
indices (List[int]): Indices of frames to extract.
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
np.ndarray: Frames in shape (num_frames, height, width, 3)
|
| 15 |
+
"""
|
| 16 |
+
frames = []
|
| 17 |
+
container.seek(0)
|
| 18 |
+
start_index = indices[0]
|
| 19 |
+
end_index = indices[-1]
|
| 20 |
+
|
| 21 |
+
for i, frame in enumerate(container.decode(video=0)):
|
| 22 |
+
if i > end_index:
|
| 23 |
+
break
|
| 24 |
+
if i >= start_index and i in indices:
|
| 25 |
+
frames.append(frame)
|
| 26 |
+
|
| 27 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>4.48.0
|
| 2 |
+
av
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|
| 5 |
+
fastapi
|
| 6 |
+
unicorn[standard]
|
| 7 |
+
gunicorn
|
| 8 |
+
pillow
|
| 9 |
+
numpy
|
| 10 |
+
opencv-python-headless
|
| 11 |
+
bitsandbytes
|
| 12 |
+
accelerate
|