File size: 1,041 Bytes
74e8af6
c2e4cc3
9a75d7c
6596636
4522029
 
6dbe383
4522029
 
8fe4b6c
bcc7480
c447bbf
4522029
a38d800
6dbe383
a38d800
6dbe383
4522029
28f0c2b
4522029
6dbe383
 
 
4522029
bafdc64
c5042ea
50979de
 
 
c5042ea
 
50979de
 
c5042ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
from huggingface_hub import login
from transformers import pipeline, AutoTokenizer
import streamlit as st
# Access the secret token from HF secrets
hf_token = os.getenv("HF_MODEL_TOKEN")

# Login to Hugging Face
login(token=hf_token)

@st.cache_resource
def load_pipe():
    model_name = "MSey/_table_CaBERT_0003_gbert-base_fl32_checkpoint-15852"
    return pipeline("token-classification", model=model_name), AutoTokenizer.from_pretrained(model_name)

pipe, tokenizer = load_pipe()

st.header("Test Environment for GBERT Ca Model")
user_input = st.text_input("Enter your Prompt here:", "")


if user_input:
    with st.spinner('Generating response...'):
        response = pipe(user_input)
        st.write("Response:")
        tuples = ""
        # Process each entity and highlight the labeled words
        for entity in response:
            label = entity['entity']
            word =  entity["word"]
            tuples += f"{word}\t{label}\n"

        # Display the highlighted text using st.markdown
        st.text(tuples)