File size: 2,474 Bytes
fe0ce42 9fa6897 fe0ce42 9fa6897 fe0ce42 9fa6897 fe0ce42 9fa6897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import json
import requests
import tiktoken
import logging
from difflib import Differ
def json_validator(
text: str,
openai_key: str,
retry: int = 3,
model: str = "text-davinci-003"
):
encoder = tiktoken.encoding_for_model(model)
for _ in range(retry):
try:
return json.loads(text)
except Exception:
prompt = f"Modify the following into a valid json format:\n{text}"
prompt_token_length = len(encoder.encode(prompt))
data = {
"model": model,
"prompt": prompt,
"max_tokens": 4097 - prompt_token_length - 64
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_key}"
}
for _ in range(retry):
response = requests.post(
'https://api.openai.com/v1/completions',
json=data,
headers=headers,
timeout=300
)
if response.status_code != 200:
logging.warning(f'fetch openai chat retry: {response.text}')
continue
text = response.json()['choices'][0]['text']
break
if response.status_code != 200:
raise Exception(response.json()['error'])
return text
def fetch_chat(
prompt: str,
openai_key: str,
retry: int = 3,
model: str = "gpt-3.5-turbo-16k"
):
data = {
"model": model,
"messages": [{"role": "user", "content": prompt}]
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_key}"
}
for _ in range(retry):
response = requests.post(
'https://api.openai.com/v1/chat/completions',
json=data,
headers=headers,
timeout=300
)
if response.status_code != 200:
logging.warning(f'fetch openai chat retry: {response.text}')
continue
result = response.json()['choices'][0]['message']['content']
return result
return response.json()["error"]
def diff_texts(text1: str, text2: str) -> list:
d = Differ()
return [
(token[2:], token[0] if token[0] != " " else None)
for token in d.compare(text1, text2)
]
|