Spaces:
Sleeping
Sleeping
| import time | |
| import gradio as gr | |
| from gradio_molecule3d import Molecule3D | |
| import numpy as np | |
| from biotite.structure.io.pdb import PDBFile | |
| from rdkit import Chem | |
| from rdkit.Chem import AllChem | |
| def generate_input_conformer( | |
| ligand_smiles: str, | |
| addHs: bool = False, | |
| minimize_maxIters: int = -1, | |
| ) -> Chem.Mol: | |
| _mol = Chem.MolFromSmiles(ligand_smiles) | |
| # need to add Hs to generate sensible conformers | |
| _mol = Chem.AddHs(_mol) | |
| # try embedding molecule using ETKDGv2 (default) | |
| confid = AllChem.EmbedMolecule( | |
| _mol, | |
| useRandomCoords=True, | |
| useBasicKnowledge=True, | |
| maxAttempts=100, | |
| randomSeed=42, | |
| ) | |
| if confid != -1: | |
| if minimize_maxIters > 0: | |
| # molecule successfully embedded - minimize | |
| success = AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters) | |
| # 0 if the optimization converged, | |
| # -1 if the forcefield could not be set up, | |
| # 1 if more iterations are required. | |
| if success == 1: | |
| # extend optimization to double the steps (extends by the same amount) | |
| AllChem.MMFFOptimizeMolecule(_mol, maxIters=minimize_maxIters) | |
| else: | |
| # this means EmbedMolecule failed | |
| # try less optimal approach | |
| confid = AllChem.EmbedMolecule( | |
| _mol, | |
| useRandomCoords=True, | |
| useBasicKnowledge=False, | |
| maxAttempts=100, | |
| randomSeed=42, | |
| ) | |
| return _mol | |
| def set_protein_to_new_coord(input_pdb_file, new_coord, output_file): | |
| structure = PDBFile.read(input_pdb_file).get_structure() | |
| structure.coord = np.array([new_coord] * len(structure.coord)) | |
| file = PDBFile() | |
| file.set_structure(structure) | |
| file.write(output_file) | |
| def predict(input_sequence, input_ligand, input_msa, input_protein): | |
| start_time = time.time() | |
| # Do inference here | |
| mol = generate_input_conformer(input_ligand, minimize_maxIters=100) | |
| molwriter = Chem.SDWriter("test_docking_pose.sdf") | |
| molwriter.write(mol) | |
| mol_coords = mol.GetConformer().GetPositions() | |
| # new_coord = [0, 0, 0] | |
| new_coord = np.mean(mol_coords, axis=1) | |
| output_file = "test_out.pdb" | |
| set_protein_to_new_coord(input_protein, new_coord, output_file) | |
| # return an output pdb file with the protein and ligand with resname LIG or UNK. | |
| # also return any metrics you want to log, metrics will not be used for evaluation but might be useful for users | |
| # metrics = {"mean_plddt": 80, "binding_affinity": -2} | |
| metrics = {} | |
| end_time = time.time() | |
| run_time = end_time - start_time | |
| return ["test_out.pdb", "test_docking_pose.sdf"], metrics, run_time | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Template for inference") | |
| gr.Markdown("Title, description, and other information about the model") | |
| with gr.Row(): | |
| input_sequence = gr.Textbox(lines=3, label="Input Protein sequence (FASTA)") | |
| input_ligand = gr.Textbox(lines=3, label="Input ligand SMILES") | |
| with gr.Row(): | |
| input_msa = gr.File(label="Input Protein MSA (A3M)") | |
| input_protein = gr.File(label="Input protein monomer") | |
| # define any options here | |
| # for automated inference the default options are used | |
| # slider_option = gr.Slider(0,10, label="Slider Option") | |
| # checkbox_option = gr.Checkbox(label="Checkbox Option") | |
| # dropdown_option = gr.Dropdown(["Option 1", "Option 2", "Option 3"], label="Radio Option") | |
| btn = gr.Button("Run Inference") | |
| gr.Examples( | |
| [ | |
| [ | |
| "", | |
| "COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O", | |
| "", | |
| "test_out.pdb" | |
| ], | |
| ], | |
| [input_sequence, input_ligand, input_msa, input_protein], | |
| ) | |
| reps = [ | |
| { | |
| "model": 0, | |
| "style": "cartoon", | |
| "color": "whiteCarbon", | |
| }, | |
| { | |
| "model": 1, | |
| "style": "stick", | |
| "color": "greenCarbon", | |
| } | |
| ] | |
| out = Molecule3D(reps=reps) | |
| metrics = gr.JSON(label="Metrics") | |
| run_time = gr.Textbox(label="Runtime") | |
| btn.click(predict, inputs=[input_sequence, input_ligand, input_msa, input_protein], outputs=[out, metrics, run_time]) | |
| app.launch() | |