import gradio as gr from huggingface_hub import InferenceClient import torch from transformers import pipeline import os # Inference client setup with token from environment token = os.getenv('HF_TOKEN') client = InferenceClient(model="HuggingFaceH4/zephyr-7b-alpha", token=token) pipe = pipeline("text-generation", "TinyLlama/TinyLlama_v1.1", torch_dtype=torch.bfloat16, device_map="auto") # pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto") # Global flag to handle cancellation stop_inference = False def respond( message, history: list[tuple[str, str]], system_message="You are a friendly Chatbot.", max_tokens=512, temperature=1.5, top_p=0.95, use_local_model=False, ): global stop_inference stop_inference = False # Reset cancellation flag # Initialize history if it's None if history is None: history = [] if use_local_model: # local inference messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for output in pipe( messages, max_new_tokens=max_tokens, temperature=temperature, do_sample=True, top_p=top_p, ): if stop_inference: response = "Inference cancelled." yield history + [(message, response)] return token = output['generated_text'][-1]['content'] response += token yield history + [(message, response)] # Yield history + new response else: # API-based inference messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message_chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if stop_inference: response = "Inference cancelled." yield history + [(message, response)] return token = message_chunk.choices[0].delta.content response += token yield history + [(message, response)] # Yield history + new response def cancel_inference(): global stop_inference stop_inference = True # Custom CSS to disable buttons visually custom_css = """ #main-container { background: #cdebc5; font-family: 'Comic Neue', sans-serif; } .gradio-container { max-width: 700px; margin: 0 auto; padding: 20px; background: #cdebc5; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 10px; } .gr-button { background-color: #a7e0fd; color: light blue; border: none; border-radius: 5px; padding: 10px 20px; cursor: pointer; transition: background-color 0.3s ease; } .gr-button:disabled { background-color: grey; cursor: not-allowed; } """ # Define system messages for each level def update_system_message(level): if level == "Elementary School": return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from elementary school students. Please respond with the vocabulary that a seven-year-old can understand." elif level == "Middle School": return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from middle school students. Please respond at a level that middle schoolers can understand." elif level == "High School": return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from high school students. Please respond at a level that a high schooler can understand." elif level == "College": return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from college students. Please respond using very advanced, college-level vocabulary." # Disable all buttons after one is clicked def disable_buttons_and_update_message(level): system_message = update_system_message(level) # Update button states to disabled return system_message, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False) # Restart function to refresh the app def restart_chatbot(): # Reset buttons and clear system message display return gr.update(value="", interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True) # Define interface with gr.Blocks(css=custom_css) as demo: gr.Markdown("