YangWu001 commited on
Commit
c9aa76d
·
1 Parent(s): 9438e36
Files changed (2) hide show
  1. app.py +55 -14
  2. app_original.py +63 -0
app.py CHANGED
@@ -1,12 +1,9 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
-
10
  def respond(
11
  message,
12
  history: list[tuple[str, str]],
@@ -16,17 +13,16 @@ def respond(
16
  top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
-
30
  for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
@@ -35,17 +31,60 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
  gr.Slider(
@@ -56,8 +95,10 @@ demo = gr.ChatInterface(
56
  label="Top-p (nucleus sampling)",
57
  ),
58
  ],
 
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # Inference client setup
 
 
5
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
6
 
 
7
  def respond(
8
  message,
9
  history: list[tuple[str, str]],
 
13
  top_p,
14
  ):
15
  messages = [{"role": "system", "content": system_message}]
16
+
17
  for val in history:
18
  if val[0]:
19
  messages.append({"role": "user", "content": val[0]})
20
  if val[1]:
21
  messages.append({"role": "assistant", "content": val[1]})
22
+
23
  messages.append({"role": "user", "content": message})
24
+
25
  response = ""
 
26
  for message in client.chat_completion(
27
  messages,
28
  max_tokens=max_tokens,
 
31
  top_p=top_p,
32
  ):
33
  token = message.choices[0].delta.content
 
34
  response += token
35
  yield response
36
 
37
+ # Custom CSS for a fancy look
38
+ custom_css = """
39
+ #main-container {
40
+ background-color: #f0f0f0;
41
+ font-family: 'Arial', sans-serif;
42
+ }
43
+
44
+ .gradio-container {
45
+ max-width: 700px;
46
+ margin: 0 auto;
47
+ padding: 20px;
48
+ background: white;
49
+ box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
50
+ border-radius: 10px;
51
+ }
52
+
53
+ .gr-button {
54
+ background-color: #4CAF50;
55
+ color: white;
56
+ border: none;
57
+ border-radius: 5px;
58
+ padding: 10px 20px;
59
+ cursor: pointer;
60
+ transition: background-color 0.3s ease;
61
+ }
62
+
63
+ .gr-button:hover {
64
+ background-color: #45a049;
65
+ }
66
+
67
+ .gr-slider input {
68
+ color: #4CAF50;
69
+ }
70
+
71
+ .gr-chat {
72
+ font-size: 16px;
73
+ }
74
+
75
+ #title {
76
+ text-align: center;
77
+ font-size: 2em;
78
+ margin-bottom: 20px;
79
+ color: #333;
80
+ }
81
  """
82
+
83
+ # Define the interface
84
  demo = gr.ChatInterface(
85
  respond,
86
  additional_inputs=[
87
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True),
88
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
89
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
90
  gr.Slider(
 
95
  label="Top-p (nucleus sampling)",
96
  ),
97
  ],
98
+ css=custom_css,
99
+ title="🌟 Fancy AI Chatbot 🌟",
100
+ description="Interact with the AI chatbot using customizable settings below."
101
  )
102
 
 
103
  if __name__ == "__main__":
104
+ demo.launch()
app_original.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+ """
43
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
+ """
45
+ demo = gr.ChatInterface(
46
+ respond,
47
+ additional_inputs=[
48
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(
52
+ minimum=0.1,
53
+ maximum=1.0,
54
+ value=0.95,
55
+ step=0.05,
56
+ label="Top-p (nucleus sampling)",
57
+ ),
58
+ ],
59
+ )
60
+
61
+
62
+ if __name__ == "__main__":
63
+ demo.launch()