Alysha Creelman
changing stream in API from True to False app.py
f9dbf68 unverified
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline
import os
import sys
if len(sys.argv) > 1:
token = sys.argv[1]
else:
token = os.getenv('HF_TOKEN')
print(token)
# Inference client setup with token from environment
# token = os.getenv('HF_TOKEN')
client = InferenceClient(model="HuggingFaceH4/zephyr-7b-alpha", token=token)
# pipe = pipeline("text-generation", "TinyLlama/TinyLlama_v1.1", torch_dtype=torch.bfloat16, device_map="auto")
pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto")
# Global flag to handle cancellation
stop_inference = False
def respond(
message,
history: list[tuple[str, str]],
system_message="You are a friendly Chatbot.",
max_tokens=512,
temperature=1.5,
top_p=0.95,
use_local_model=False,
):
global stop_inference
stop_inference = False # Reset cancellation flag
# Initialize history if it's None
if history is None:
history = []
if use_local_model:
# local inference
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for output in pipe(
messages,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
top_p=top_p,
):
if stop_inference:
response = "Inference cancelled."
yield history + [(message, response)]
return
token = output['generated_text'][-1]['content']
response += token
yield history + [(message, response)] # Yield history + new response
else:
# API-based inference
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message_chunk in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=False,
temperature=temperature,
top_p=top_p,
):
if stop_inference:
response = "Inference cancelled."
yield history + [(message, response)]
return
token = message_chunk.choices[0].delta.content
response += token
yield history + [(message, response)] # Yield history + new response
def cancel_inference():
global stop_inference
stop_inference = True
# Custom CSS to disable buttons visually
custom_css = """
#main-container {
background: #cdebc5;
font-family: 'Comic Neue', sans-serif;
}
.gradio-container {
max-width: 700px;
margin: 0 auto;
padding: 20px;
background: #cdebc5;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
border-radius: 10px;
}
.gr-button {
background-color: #a7e0fd;
color: light blue;
border: none;
border-radius: 5px;
padding: 10px 20px;
cursor: pointer;
transition: background-color 0.3s ease;
}
.gr-button:disabled {
background-color: grey;
cursor: not-allowed;
}
"""
# Define system messages for each level
def update_system_message(level):
if level == "Elementary School":
return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from elementary school students. Please respond with the vocabulary that a seven-year-old can understand."
elif level == "Middle School":
return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from middle school students. Please respond at a level that middle schoolers can understand."
elif level == "High School":
return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from high school students. Please respond at a level that a high schooler can understand."
elif level == "College":
return "Your name is Wormington. You are a friendly Chatbot that can help answer questions from college students. Please respond using very advanced, college-level vocabulary."
# Disable all buttons after one is clicked
def disable_buttons_and_update_message(level):
system_message = update_system_message(level)
# Update button states to disabled
return system_message, gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
# Restart function to refresh the app
def restart_chatbot():
# Reset buttons and clear system message display
return gr.update(value="", interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
# Define interface
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("<h2 style='text-align: center;'>🍎✏️ School AI Chatbot ✏️🍎</h2>")
gr.Markdown("<h1 style= 'text-align: center;'>Interact with Wormington Scholar πŸ› by selecting the appropriate level below!</h1>")
with gr.Row():
elementary_button = gr.Button("Elementary School", elem_id="elementary", variant="primary")
middle_button = gr.Button("Middle School", elem_id="middle", variant="primary")
high_button = gr.Button("High School", elem_id="high", variant="primary")
college_button = gr.Button("College", elem_id="college", variant="primary")
# Display area for the selected system message
system_message_display = gr.Textbox(label="System Message", value="", interactive=False)
# Disable buttons and update the system message when a button is clicked
elementary_button.click(fn=lambda: disable_buttons_and_update_message("Elementary School"),
inputs=None,
outputs=[system_message_display, elementary_button, middle_button, high_button, college_button])
middle_button.click(fn=lambda: disable_buttons_and_update_message("Middle School"),
inputs=None,
outputs=[system_message_display, elementary_button, middle_button, high_button, college_button])
high_button.click(fn=lambda: disable_buttons_and_update_message("High School"),
inputs=None,
outputs=[system_message_display, elementary_button, middle_button, high_button, college_button])
college_button.click(fn=lambda: disable_buttons_and_update_message("College"),
inputs=None,
outputs=[system_message_display, elementary_button, middle_button, high_button, college_button])
with gr.Row():
use_local_model = gr.Checkbox(label="Use Local Model", value=False)
with gr.Row():
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
temperature = gr.Slider(minimum=0.5, maximum=4.0, value=1.2, step=0.1, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")
chat_history = gr.Chatbot(label="Chat")
user_input = gr.Textbox(show_label=False, placeholder="Wormington would love to answer your questions. Type them here:")
cancel_button = gr.Button("Cancel Inference", variant="danger")
restart_button = gr.Button("Restart Chatbot", variant="secondary")
# Adjusted to ensure history is maintained and passed correctly
user_input.submit(respond, [user_input, chat_history, system_message_display, max_tokens, temperature, top_p, use_local_model], chat_history)
cancel_button.click(cancel_inference)
# Reset the buttons when the "Restart Chatbot" button is clicked
restart_button.click(fn=restart_chatbot,
inputs=None,
outputs=[system_message_display, elementary_button, middle_button, high_button, college_button])
if __name__ == "__main__":
demo.launch(share=False)