|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import time |
|
import torch |
|
from transformers import pipeline |
|
|
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
|
|
stop_inference = False |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
use_local_model, |
|
): |
|
global stop_inference |
|
stop_inference = False |
|
|
|
if use_local_model: |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for message in pipe( |
|
messages, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
do_sample=True, |
|
top_p=top_p, |
|
): |
|
token = message['generated_text'][-1]['content'] |
|
response += token |
|
yield response |
|
|
|
history.append((message, response)) |
|
yield history |
|
|
|
else: |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for message_chunk in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
if stop_inference: |
|
response = "Inference cancelled." |
|
break |
|
token = message_chunk.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
history.append((message, response)) |
|
yield history |
|
|
|
def cancel_inference(): |
|
global stop_inference |
|
stop_inference = True |
|
|
|
|
|
custom_css = """ |
|
#main-container { |
|
background-color: #f0f0f0; |
|
font-family: 'Arial', sans-serif; |
|
} |
|
|
|
.gradio-container { |
|
max-width: 700px; |
|
margin: 0 auto; |
|
padding: 20px; |
|
background: white; |
|
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); |
|
border-radius: 10px; |
|
} |
|
|
|
.gr-button { |
|
background-color: #4CAF50; |
|
color: white; |
|
border: none; |
|
border-radius: 5px; |
|
padding: 10px 20px; |
|
cursor: pointer; |
|
transition: background-color 0.3s ease; |
|
} |
|
|
|
.gr-button:hover { |
|
background-color: #45a049; |
|
} |
|
|
|
.gr-slider input { |
|
color: #4CAF50; |
|
} |
|
|
|
.gr-chat { |
|
font-size: 16px; |
|
} |
|
|
|
#title { |
|
text-align: center; |
|
font-size: 2em; |
|
margin-bottom: 20px; |
|
color: #333; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=custom_css) as demo: |
|
gr.Markdown("<h1 style='text-align: center;'>π Fancy AI Chatbot π</h1>") |
|
gr.Markdown("Interact with the AI chatbot using customizable settings below.") |
|
|
|
with gr.Row(): |
|
system_message = gr.Textbox(value="You are a friendly Chatbot.", label="System message", interactive=True) |
|
use_local_model = gr.Checkbox(label="Use Local Model", value=False) |
|
|
|
with gr.Row(): |
|
max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens") |
|
temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)") |
|
|
|
chat_history = gr.Chatbot(label="Chat") |
|
|
|
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...") |
|
|
|
cancel_button = gr.Button("Cancel Inference", variant="danger") |
|
|
|
def chat_fn(message, history): |
|
response_gen = respond( |
|
message, |
|
history, |
|
system_message.value, |
|
max_tokens.value, |
|
temperature.value, |
|
top_p.value, |
|
use_local_model.value, |
|
) |
|
for response in response_gen: |
|
history[-1] = (message, response) |
|
yield history |
|
|
|
user_input.submit(chat_fn, [user_input, chat_history], chat_history) |
|
cancel_button.click(cancel_inference) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=False) |
|
|