import os import streamlit as st #from dotenv import load_dotenv #import google.generativeai as gen_ai # Load environment variables load_dotenv() # Configure Streamlit page settings st.set_page_config( page_title="ML Galaxy!", page_icon=":brain:", # Favicon emoji layout="centered", # Page layout option ) # Retrieve the Google API key from the environment GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") # Check if the API key is loaded if not GOOGLE_API_KEY: st.error("API key not found! Please set the GOOGLE_API_KEY in your .env file.") st.stop() # Configure the Generative AI model try: gen_ai.configure(api_key=GOOGLE_API_KEY) model = gen_ai.GenerativeModel("gemini-pro") except Exception as e: st.error(f"Error initializing the Gemini-Pro model: {e}") st.stop() # Function to translate roles between Gemini-Pro and Streamlit terminology def translate_role_for_streamlit(user_role): return "assistant" if user_role == "model" else user_role # Initialize the chat session if not already present in session state if "chat_session" not in st.session_state: try: st.session_state.chat_session = model.start_chat(history=[]) except Exception as e: st.error(f"Error initializing chat session: {e}") st.stop() # Display the chatbot's title st.title("🤖 ML Galaxy") # Display the chat history try: for message in st.session_state.chat_session.history: with st.chat_message(translate_role_for_streamlit(message.role)): st.markdown(message.parts[0].text) except Exception as e: st.error(f"Error displaying chat history: {e}") # Input field for user's message user_prompt = st.chat_input("Ask Gemini-Pro...") if user_prompt: # Add the user's message to the chat and display it st.chat_message("user").markdown(user_prompt) # Send the user's message to Gemini-Pro and get the response try: gemini_response = st.session_state.chat_session.send_message(user_prompt) # Display Gemini-Pro's response with st.chat_message("assistant"): st.markdown(gemini_response.text) except Exception as e: st.error(f"Error processing your message: {e}")