File size: 2,206 Bytes
ff8aeca
 
2c4e859
 
ff8aeca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import os
import streamlit as st
#from dotenv import load_dotenv
#import google.generativeai as gen_ai

# Load environment variables
load_dotenv()

# Configure Streamlit page settings
st.set_page_config(
    page_title="ML Galaxy!",
    page_icon=":brain:",  # Favicon emoji
    layout="centered",  # Page layout option
)

# Retrieve the Google API key from the environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

# Check if the API key is loaded
if not GOOGLE_API_KEY:
    st.error("API key not found! Please set the GOOGLE_API_KEY in your .env file.")
    st.stop()

# Configure the Generative AI model
try:
    gen_ai.configure(api_key=GOOGLE_API_KEY)
    model = gen_ai.GenerativeModel("gemini-pro")
except Exception as e:
    st.error(f"Error initializing the Gemini-Pro model: {e}")
    st.stop()

# Function to translate roles between Gemini-Pro and Streamlit terminology
def translate_role_for_streamlit(user_role):
    return "assistant" if user_role == "model" else user_role

# Initialize the chat session if not already present in session state
if "chat_session" not in st.session_state:
    try:
        st.session_state.chat_session = model.start_chat(history=[])
    except Exception as e:
        st.error(f"Error initializing chat session: {e}")
        st.stop()

# Display the chatbot's title
st.title("🤖 ML Galaxy")

# Display the chat history
try:
    for message in st.session_state.chat_session.history:
        with st.chat_message(translate_role_for_streamlit(message.role)):
            st.markdown(message.parts[0].text)
except Exception as e:
    st.error(f"Error displaying chat history: {e}")

# Input field for user's message
user_prompt = st.chat_input("Ask Gemini-Pro...")
if user_prompt:
    # Add the user's message to the chat and display it
    st.chat_message("user").markdown(user_prompt)

    # Send the user's message to Gemini-Pro and get the response
    try:
        gemini_response = st.session_state.chat_session.send_message(user_prompt)
        # Display Gemini-Pro's response
        with st.chat_message("assistant"):
            st.markdown(gemini_response.text)
    except Exception as e:
        st.error(f"Error processing your message: {e}")