Spaces:
Running
Running
File size: 7,764 Bytes
81f02dd 8445179 81f02dd 4795176 81f02dd 4795176 81f02dd 4795176 81f02dd 8445179 4795176 8445179 6460e33 4795176 81f02dd 6460e33 4795176 81f02dd 4795176 81f02dd 4795176 81f02dd 4795176 81f02dd 8445179 81f02dd 2a60c75 4795176 2a60c75 d36ef68 2a60c75 4795176 840c7b5 4795176 2a60c75 81f02dd 4795176 6460e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import models, transforms
from ultralytics import YOLO
import gradio as gr
import torch.nn as nn
import os
# --- DOCUMENTATION STRINGS (English and Urdu) ---
USAGE_GUIDELINES = """
## 1. Quick Start Guide: Run Instructions
**English:**
1. **Upload:** Click the 'Upload Rice Image' box and select your image (JPG or PNG).
2. **Run:** Click the **"Run Analysis"** button.
3. **Review:** The output image will show each detected rice grain marked with its predicted class label.
**Urdu (اردو):**
## 1. فوری استعمال کی ہدایات: تجزیہ شروع کریں
1. **تصویر اپ لوڈ کریں:** 'چاول کی تصویر اپ لوڈ کریں' کے باکس پر کلک کریں اور اپنی تصویر (JPG یا PNG) منتخب کریں۔
2. **چلائیں:** **"تجزیہ شروع کریں"** بٹن پر کلک کریں۔
3. **نتائج دیکھیں:** آؤٹ پٹ تصویر ہر شناخت شدہ چاول کے دانے کو اس کی پیش گوئی کردہ قسم کے لیبل کے ساتھ دکھائے گی۔
"""
INPUT_EXPLANATION = """
## 2. Expected Inputs / متوقع ان پٹ
| Input Field (ان پٹ فیلڈ) | Purpose (مقصد) | Requirement (ضرورت) |
| :--- | :--- | :--- |
| **Upload Image** / تصویر اپ لوڈ کریں | The image containing the rice grains for analysis. | Must be a single image file (JPG, PNG). The input should preferably contain clear, separated rice grains. |
**Important Note (اہم نوٹ):** For the best detection and classification accuracy, ensure the rice grains are scattered (not heavily overlapping) and the background is simple.
"""
OUTPUT_EXPLANATION = """
## 3. Expected Outputs (Detection and Classification) / متوقع آؤٹ پٹ
The output is the original image overlayed with results from the two-stage AI model:
* **Bounding Boxes:** Each individual rice grain detected by the YOLO model is enclosed in a **Green rectangle**.
* **Labels:** Above each rectangle, the predicted class label is displayed:
* **c9** (A specific rice variety)
* **kant** (Another specific rice variety)
* **superf** (A third specific rice variety)
**Urdu (اردو):**
آؤٹ پٹ اصل تصویر ہوگی جس پر دو مراحل پر مشتمل AI ماڈل کے نتائج لگائے گئے ہیں:
* **نشان زد ڈبے:** YOLO ماڈل سے تلاش کیے گئے ہر چاول کے دانے کے گرد **سبز رنگ کا مستطیل** لگایا جائے گا۔
* **لیبلز:** ہر مستطیل کے اوپر اس کی پیش گوئی کردہ قسم کا لیبل درج ہوگا: c9، kant، یا superf۔
"""
# --- CORE LOGIC (KEPT AS IS) ---
# Initialize device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load models
# NOTE: These paths (best.pt, rice_resnet_model.pth) must exist in the execution directory.
try:
yolo_model = YOLO('best.pt')
resnet = models.resnet50(weights=None) # Use weights=None since we are loading custom weights
resnet.fc = nn.Linear(resnet.fc.in_features, 3)
resnet.load_state_dict(torch.load('rice_resnet_model.pth', map_location=device))
resnet = resnet.to(device)
resnet.eval()
except Exception as e:
print(f"Error loading models: {e}. Ensure 'best.pt' and 'rice_resnet_model.pth' are present.")
yolo_model = None
resnet = None
# Class labels
class_labels = ["c9", "kant", "superf"]
# Image transformations
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def classify_crop(crop_img):
"""Classify a single rice grain crop"""
if resnet is None:
return "Error"
image = transform(crop_img).unsqueeze(0).to(device)
with torch.no_grad():
output = resnet(image)
_, predicted = torch.max(output, 1)
return class_labels[predicted.item()]
def detect_and_classify(input_image):
"""Process the image and classify each grain"""
if yolo_model is None or resnet is None:
raise gr.Error("Models failed to load. Cannot proceed with analysis.")
if input_image is None:
raise gr.Error("Please upload an image or select an example.")
image = np.array(input_image)
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# YOLO Detection
results = yolo_model(image, verbose=False)[0]
boxes = results.boxes.xyxy.cpu().numpy()
if len(boxes) == 0:
gr.Warning("No rice grains detected in the image.")
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
for box in boxes:
x1, y1, x2, y2 = map(int, box[:4])
crop = image[y1:y2, x1:x2]
# Check if crop is valid
if crop.shape[0] > 0 and crop.shape[1] > 0:
crop_pil = Image.fromarray(cv2.cvtColor(crop, cv2.COLOR_BGR2RGB))
predicted_label = classify_crop(crop_pil)
# Draw results
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) # Green box
cv2.putText(image,
predicted_label,
(x1, y1-10),
cv2.FONT_HERSHEY_SIMPLEX,
0.9,
(36, 255, 12),
2) # Green text
return Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# --- GRADIO UI (Single Tab) ---
with gr.Blocks(title="Rice Variety Classification") as demo:
gr.Markdown(
"""
# Rice Variety Classification System / چاول کی اقسام کی شناخت کا نظام
Upload an image containing rice grains. The system will detect and classify each grain using a two-stage AI pipeline (YOLO for detection, ResNet for classification).
"""
)
# 1. GUIDELINES SECTION
with gr.Accordion(" Tips & Guidelines (ہدایات)", open=False):
gr.Markdown(USAGE_GUIDELINES)
gr.Markdown("---")
gr.Markdown(INPUT_EXPLANATION)
gr.Markdown("---")
gr.Markdown(OUTPUT_EXPLANATION)
gr.Markdown("---")
# 2. APPLICATION INTERFACE
gr.Markdown("## Start Analysis / تجزیہ شروع کریں")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Step 1: Upload an Image of Rice / چاول کی تصویر اپ لوڈ کریں")
image_input = gr.Image(type="pil")
gr.Markdown("## Step 2: Click Run Analysis /تجزیہ شروع کریں ")
submit_btn = gr.Button("Run Analysis / تجزیہ شروع کریں", variant="primary")
gr.Markdown("## Outputs / نتائج ")
output_image = gr.Image(scale=2, interactive=True)
submit_btn.click(
fn=detect_and_classify,
inputs=image_input,
outputs=output_image
)
gr.Markdown("---")
# 3. EXAMPLES SECTION
gr.Markdown("## Example Images / مثال تصاویر")
# Ensure "samples/" directory exists and contains these images
gr.Examples(
examples=[
"samples/rice1.jpg",
"samples/rice2.jpg",
"samples/rice3.jpg",
"samples/rice4.jpg",
"samples/rice5.jpg",
"samples/rice6.jpg"
],
inputs=image_input,
outputs=output_image, # Required for proper caching and execution
fn=detect_and_classify, # Required for proper caching and execution
# cache_examples=True,
label="Click to load and run a sample image / نمونہ تصویر لوڈ اور رن کرنے کے لیے کلک کریں"
)
demo.queue()
demo.launch()
|