|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import traceback |
|
from pathlib import Path |
|
from typing import Dict, Optional, Union |
|
from uuid import uuid4 |
|
|
|
from huggingface_hub import HfFolder, ModelCard, ModelCardData, whoami |
|
from huggingface_hub.utils import is_jinja_available |
|
|
|
from .. import __version__ |
|
from .constants import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT |
|
from .import_utils import ( |
|
ENV_VARS_TRUE_VALUES, |
|
_flax_version, |
|
_jax_version, |
|
_onnxruntime_version, |
|
_torch_version, |
|
is_flax_available, |
|
is_onnx_available, |
|
is_torch_available, |
|
) |
|
from .logging import get_logger |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md" |
|
SESSION_ID = uuid4().hex |
|
HF_HUB_OFFLINE = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES |
|
DISABLE_TELEMETRY = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES |
|
HUGGINGFACE_CO_TELEMETRY = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" |
|
|
|
|
|
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str: |
|
""" |
|
Formats a user-agent string with basic info about a request. |
|
""" |
|
ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}" |
|
if DISABLE_TELEMETRY or HF_HUB_OFFLINE: |
|
return ua + "; telemetry/off" |
|
if is_torch_available(): |
|
ua += f"; torch/{_torch_version}" |
|
if is_flax_available(): |
|
ua += f"; jax/{_jax_version}" |
|
ua += f"; flax/{_flax_version}" |
|
if is_onnx_available(): |
|
ua += f"; onnxruntime/{_onnxruntime_version}" |
|
|
|
if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES: |
|
ua += "; is_ci/true" |
|
if isinstance(user_agent, dict): |
|
ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items()) |
|
elif isinstance(user_agent, str): |
|
ua += "; " + user_agent |
|
return ua |
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): |
|
if token is None: |
|
token = HfFolder.get_token() |
|
if organization is None: |
|
username = whoami(token)["name"] |
|
return f"{username}/{model_id}" |
|
else: |
|
return f"{organization}/{model_id}" |
|
|
|
|
|
def create_model_card(args, model_name): |
|
if not is_jinja_available(): |
|
raise ValueError( |
|
"Modelcard rendering is based on Jinja templates." |
|
" Please make sure to have `jinja` installed before using `create_model_card`." |
|
" To install it, please run `pip install Jinja2`." |
|
) |
|
|
|
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]: |
|
return |
|
|
|
hub_token = args.hub_token if hasattr(args, "hub_token") else None |
|
repo_name = get_full_repo_name(model_name, token=hub_token) |
|
|
|
model_card = ModelCard.from_template( |
|
card_data=ModelCardData( |
|
language="en", |
|
license="apache-2.0", |
|
library_name="diffusers", |
|
tags=[], |
|
datasets=args.dataset_name, |
|
metrics=[], |
|
), |
|
template_path=MODEL_CARD_TEMPLATE_PATH, |
|
model_name=model_name, |
|
repo_name=repo_name, |
|
dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None, |
|
learning_rate=args.learning_rate, |
|
train_batch_size=args.train_batch_size, |
|
eval_batch_size=args.eval_batch_size, |
|
gradient_accumulation_steps=( |
|
args.gradient_accumulation_steps if hasattr(args, "gradient_accumulation_steps") else None |
|
), |
|
adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None, |
|
adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None, |
|
adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None, |
|
adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None, |
|
lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None, |
|
lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None, |
|
ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None, |
|
ema_power=args.ema_power if hasattr(args, "ema_power") else None, |
|
ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None, |
|
mixed_precision=args.mixed_precision, |
|
) |
|
|
|
card_path = os.path.join(args.output_dir, "README.md") |
|
model_card.save(card_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
hf_cache_home = os.path.expanduser( |
|
os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) |
|
) |
|
old_diffusers_cache = os.path.join(hf_cache_home, "diffusers") |
|
|
|
|
|
def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None: |
|
if new_cache_dir is None: |
|
new_cache_dir = DIFFUSERS_CACHE |
|
if old_cache_dir is None: |
|
old_cache_dir = old_diffusers_cache |
|
|
|
old_cache_dir = Path(old_cache_dir).expanduser() |
|
new_cache_dir = Path(new_cache_dir).expanduser() |
|
for old_blob_path in old_cache_dir.glob("**/blobs/*"): |
|
if old_blob_path.is_file() and not old_blob_path.is_symlink(): |
|
new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir) |
|
new_blob_path.parent.mkdir(parents=True, exist_ok=True) |
|
os.replace(old_blob_path, new_blob_path) |
|
try: |
|
os.symlink(new_blob_path, old_blob_path) |
|
except OSError: |
|
logger.warning( |
|
"Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." |
|
) |
|
|
|
|
|
|
|
cache_version_file = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") |
|
if not os.path.isfile(cache_version_file): |
|
cache_version = 0 |
|
else: |
|
with open(cache_version_file) as f: |
|
cache_version = int(f.read()) |
|
|
|
if cache_version < 1: |
|
old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 |
|
if old_cache_is_not_empty: |
|
logger.warning( |
|
"The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " |
|
"existing cached models. This is a one-time operation, you can interrupt it or run it " |
|
"later by calling `diffusers.utils.hub_utils.move_cache()`." |
|
) |
|
try: |
|
move_cache() |
|
except Exception as e: |
|
trace = "\n".join(traceback.format_tb(e.__traceback__)) |
|
logger.error( |
|
f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " |
|
"file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " |
|
"message and we will do our best to help." |
|
) |
|
|
|
if cache_version < 1: |
|
try: |
|
os.makedirs(DIFFUSERS_CACHE, exist_ok=True) |
|
with open(cache_version_file, "w") as f: |
|
f.write("1") |
|
except Exception: |
|
logger.warning( |
|
f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " |
|
"the directory exists and can be written to." |
|
) |
|
|