|
|
|
from ..utils import DummyObject, requires_backends |
|
|
|
|
|
class AltDiffusionImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class AltDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class CycleDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class LDMTextToImagePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class PaintByExamplePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class SemanticStableDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionAttendAndExcitePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionControlNetPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionDepth2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionImageVariationPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionInpaintPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionInpaintPipelineLegacy(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionInstructPix2PixPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionLatentUpscalePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPanoramaPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPipelineSafe(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionPix2PixZeroPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionSAGPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableDiffusionUpscalePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableUnCLIPImg2ImgPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class StableUnCLIPPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UnCLIPImageVariationPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class UnCLIPPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionDualGuidedPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionImageVariationPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VersatileDiffusionTextToImagePipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
|
|
class VQDiffusionPipeline(metaclass=DummyObject): |
|
_backends = ["torch", "transformers"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_config(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|
|
@classmethod |
|
def from_pretrained(cls, *args, **kwargs): |
|
requires_backends(cls, ["torch", "transformers"]) |
|
|