|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.utils.checkpoint |
|
from transformers import ( |
|
CLIPFeatureExtractor, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from ...models import AutoencoderKL, DualTransformer2DModel, Transformer2DModel, UNet2DConditionModel |
|
from ...schedulers import KarrasDiffusionSchedulers |
|
from ...utils import is_accelerate_available, logging, randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from .modeling_text_unet import UNetFlatConditionModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class VersatileDiffusionDualGuidedPipeline(DiffusionPipeline): |
|
r""" |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
vqvae ([`VQModel`]): |
|
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. |
|
bert ([`LDMBertModel`]): |
|
Text-encoder model based on [BERT](https://huggingface.co/docs/transformers/model_doc/bert) architecture. |
|
tokenizer (`transformers.BertTokenizer`): |
|
Tokenizer of class |
|
[BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
tokenizer: CLIPTokenizer |
|
image_feature_extractor: CLIPFeatureExtractor |
|
text_encoder: CLIPTextModelWithProjection |
|
image_encoder: CLIPVisionModelWithProjection |
|
image_unet: UNet2DConditionModel |
|
text_unet: UNetFlatConditionModel |
|
vae: AutoencoderKL |
|
scheduler: KarrasDiffusionSchedulers |
|
|
|
_optional_components = ["text_unet"] |
|
|
|
def __init__( |
|
self, |
|
tokenizer: CLIPTokenizer, |
|
image_feature_extractor: CLIPFeatureExtractor, |
|
text_encoder: CLIPTextModelWithProjection, |
|
image_encoder: CLIPVisionModelWithProjection, |
|
image_unet: UNet2DConditionModel, |
|
text_unet: UNetFlatConditionModel, |
|
vae: AutoencoderKL, |
|
scheduler: KarrasDiffusionSchedulers, |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
tokenizer=tokenizer, |
|
image_feature_extractor=image_feature_extractor, |
|
text_encoder=text_encoder, |
|
image_encoder=image_encoder, |
|
image_unet=image_unet, |
|
text_unet=text_unet, |
|
vae=vae, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
if self.text_unet is not None and ( |
|
"dual_cross_attention" not in self.image_unet.config or not self.image_unet.config.dual_cross_attention |
|
): |
|
|
|
self._convert_to_dual_attention() |
|
|
|
def remove_unused_weights(self): |
|
self.register_modules(text_unet=None) |
|
|
|
def _convert_to_dual_attention(self): |
|
""" |
|
Replace image_unet's `Transformer2DModel` blocks with `DualTransformer2DModel` that contains transformer blocks |
|
from both `image_unet` and `text_unet` |
|
""" |
|
for name, module in self.image_unet.named_modules(): |
|
if isinstance(module, Transformer2DModel): |
|
parent_name, index = name.rsplit(".", 1) |
|
index = int(index) |
|
|
|
image_transformer = self.image_unet.get_submodule(parent_name)[index] |
|
text_transformer = self.text_unet.get_submodule(parent_name)[index] |
|
|
|
config = image_transformer.config |
|
dual_transformer = DualTransformer2DModel( |
|
num_attention_heads=config.num_attention_heads, |
|
attention_head_dim=config.attention_head_dim, |
|
in_channels=config.in_channels, |
|
num_layers=config.num_layers, |
|
dropout=config.dropout, |
|
norm_num_groups=config.norm_num_groups, |
|
cross_attention_dim=config.cross_attention_dim, |
|
attention_bias=config.attention_bias, |
|
sample_size=config.sample_size, |
|
num_vector_embeds=config.num_vector_embeds, |
|
activation_fn=config.activation_fn, |
|
num_embeds_ada_norm=config.num_embeds_ada_norm, |
|
) |
|
dual_transformer.transformers[0] = image_transformer |
|
dual_transformer.transformers[1] = text_transformer |
|
|
|
self.image_unet.get_submodule(parent_name)[index] = dual_transformer |
|
self.image_unet.register_to_config(dual_cross_attention=True) |
|
|
|
def _revert_dual_attention(self): |
|
""" |
|
Revert the image_unet `DualTransformer2DModel` blocks back to `Transformer2DModel` with image_unet weights Call |
|
this function if you reuse `image_unet` in another pipeline, e.g. `VersatileDiffusionPipeline` |
|
""" |
|
for name, module in self.image_unet.named_modules(): |
|
if isinstance(module, DualTransformer2DModel): |
|
parent_name, index = name.rsplit(".", 1) |
|
index = int(index) |
|
self.image_unet.get_submodule(parent_name)[index] = module.transformers[0] |
|
|
|
self.image_unet.register_to_config(dual_cross_attention=False) |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.image_unet, self.text_unet, self.text_encoder, self.vae]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.image_unet, "_hf_hook"): |
|
return self.device |
|
for module in self.image_unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def _encode_text_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
""" |
|
|
|
def normalize_embeddings(encoder_output): |
|
embeds = self.text_encoder.text_projection(encoder_output.last_hidden_state) |
|
embeds_pooled = encoder_output.text_embeds |
|
embeds = embeds / torch.norm(embeds_pooled.unsqueeze(1), dim=-1, keepdim=True) |
|
return embeds |
|
|
|
batch_size = len(prompt) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="pt").input_ids |
|
|
|
if not torch.equal(text_input_ids, untruncated_ids): |
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = normalize_embeddings(prompt_embeds) |
|
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] * batch_size |
|
max_length = text_input_ids.shape[-1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) |
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
def _encode_image_prompt(self, prompt, device, num_images_per_prompt, do_classifier_free_guidance): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
""" |
|
|
|
def normalize_embeddings(encoder_output): |
|
embeds = self.image_encoder.vision_model.post_layernorm(encoder_output.last_hidden_state) |
|
embeds = self.image_encoder.visual_projection(embeds) |
|
embeds_pooled = embeds[:, 0:1] |
|
embeds = embeds / torch.norm(embeds_pooled, dim=-1, keepdim=True) |
|
return embeds |
|
|
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
|
|
image_input = self.image_feature_extractor(images=prompt, return_tensors="pt") |
|
pixel_values = image_input.pixel_values.to(device).to(self.image_encoder.dtype) |
|
image_embeddings = self.image_encoder(pixel_values) |
|
image_embeddings = normalize_embeddings(image_embeddings) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) |
|
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance: |
|
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size |
|
uncond_images = self.image_feature_extractor(images=uncond_images, return_tensors="pt") |
|
pixel_values = uncond_images.pixel_values.to(device).to(self.image_encoder.dtype) |
|
negative_prompt_embeds = self.image_encoder(pixel_values) |
|
negative_prompt_embeds = normalize_embeddings(negative_prompt_embeds) |
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) |
|
|
|
return image_embeddings |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs(self, prompt, image, height, width, callback_steps): |
|
if not isinstance(prompt, str) and not isinstance(prompt, PIL.Image.Image) and not isinstance(prompt, list): |
|
raise ValueError(f"`prompt` has to be of type `str` `PIL.Image` or `list` but is {type(prompt)}") |
|
if not isinstance(image, str) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list): |
|
raise ValueError(f"`image` has to be of type `str` `PIL.Image` or `list` but is {type(image)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def set_transformer_params(self, mix_ratio: float = 0.5, condition_types: Tuple = ("text", "image")): |
|
for name, module in self.image_unet.named_modules(): |
|
if isinstance(module, DualTransformer2DModel): |
|
module.mix_ratio = mix_ratio |
|
|
|
for i, type in enumerate(condition_types): |
|
if type == "text": |
|
module.condition_lengths[i] = self.text_encoder.config.max_position_embeddings |
|
module.transformer_index_for_condition[i] = 1 |
|
else: |
|
module.condition_lengths[i] = 257 |
|
module.transformer_index_for_condition[i] = 0 |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], |
|
image: Union[str, List[str]], |
|
text_to_image_strength: float = 0.5, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`): |
|
The prompt or prompts to guide the image generation. |
|
height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored |
|
if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from diffusers import VersatileDiffusionDualGuidedPipeline |
|
>>> import torch |
|
>>> import requests |
|
>>> from io import BytesIO |
|
>>> from PIL import Image |
|
|
|
>>> # let's download an initial image |
|
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" |
|
|
|
>>> response = requests.get(url) |
|
>>> image = Image.open(BytesIO(response.content)).convert("RGB") |
|
>>> text = "a red car in the sun" |
|
|
|
>>> pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained( |
|
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe.remove_unused_weights() |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> generator = torch.Generator(device="cuda").manual_seed(0) |
|
>>> text_to_image_strength = 0.75 |
|
|
|
>>> image = pipe( |
|
... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator |
|
... ).images[0] |
|
>>> image.save("./car_variation.png") |
|
``` |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When |
|
returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.image_unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.image_unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs(prompt, image, height, width, callback_steps) |
|
|
|
|
|
prompt = [prompt] if not isinstance(prompt, list) else prompt |
|
image = [image] if not isinstance(image, list) else image |
|
batch_size = len(prompt) |
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_text_prompt(prompt, device, num_images_per_prompt, do_classifier_free_guidance) |
|
image_embeddings = self._encode_image_prompt(image, device, num_images_per_prompt, do_classifier_free_guidance) |
|
dual_prompt_embeddings = torch.cat([prompt_embeds, image_embeddings], dim=1) |
|
prompt_types = ("text", "image") |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.image_unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dual_prompt_embeddings.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
self.set_transformer_params(text_to_image_strength, prompt_types) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.image_unet(latent_model_input, t, encoder_hidden_states=dual_prompt_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|