|
from dataclasses import dataclass |
|
from enum import Enum |
|
from typing import List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL |
|
from PIL import Image |
|
|
|
from ...utils import BaseOutput, is_torch_available, is_transformers_available |
|
|
|
|
|
@dataclass |
|
class SafetyConfig(object): |
|
WEAK = { |
|
"sld_warmup_steps": 15, |
|
"sld_guidance_scale": 20, |
|
"sld_threshold": 0.0, |
|
"sld_momentum_scale": 0.0, |
|
"sld_mom_beta": 0.0, |
|
} |
|
MEDIUM = { |
|
"sld_warmup_steps": 10, |
|
"sld_guidance_scale": 1000, |
|
"sld_threshold": 0.01, |
|
"sld_momentum_scale": 0.3, |
|
"sld_mom_beta": 0.4, |
|
} |
|
STRONG = { |
|
"sld_warmup_steps": 7, |
|
"sld_guidance_scale": 2000, |
|
"sld_threshold": 0.025, |
|
"sld_momentum_scale": 0.5, |
|
"sld_mom_beta": 0.7, |
|
} |
|
MAX = { |
|
"sld_warmup_steps": 0, |
|
"sld_guidance_scale": 5000, |
|
"sld_threshold": 1.0, |
|
"sld_momentum_scale": 0.5, |
|
"sld_mom_beta": 0.7, |
|
} |
|
|
|
|
|
@dataclass |
|
class StableDiffusionSafePipelineOutput(BaseOutput): |
|
""" |
|
Output class for Safe Stable Diffusion pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, |
|
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. |
|
nsfw_content_detected (`List[bool]`) |
|
List of flags denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, or `None` if safety checking could not be performed. |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images that were flagged by the safety checker any may contain "not-safe-for-work" |
|
(nsfw) content, or `None` if no safety check was performed or no images were flagged. |
|
applied_safety_concept (`str`) |
|
The safety concept that was applied for safety guidance, or `None` if safety guidance was disabled |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
nsfw_content_detected: Optional[List[bool]] |
|
unsafe_images: Optional[Union[List[PIL.Image.Image], np.ndarray]] |
|
applied_safety_concept: Optional[str] |
|
|
|
|
|
if is_transformers_available() and is_torch_available(): |
|
from .pipeline_stable_diffusion_safe import StableDiffusionPipelineSafe |
|
from .safety_checker import SafeStableDiffusionSafetyChecker |
|
|