|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
from transformers.models.clip.modeling_clip import CLIPTextModelOutput |
|
|
|
from ...models import AutoencoderKL, PriorTransformer, UNet2DConditionModel |
|
from ...models.embeddings import get_timestep_embedding |
|
from ...schedulers import KarrasDiffusionSchedulers |
|
from ...utils import is_accelerate_available, logging, randn_tensor, replace_example_docstring |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableUnCLIPPipeline |
|
|
|
>>> pipe = StableUnCLIPPipeline.from_pretrained( |
|
... "fusing/stable-unclip-2-1-l", torch_dtype=torch.float16 |
|
... ) # TODO update model path |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars" |
|
>>> images = pipe(prompt).images |
|
>>> images[0].save("astronaut_horse.png") |
|
``` |
|
""" |
|
|
|
|
|
class StableUnCLIPPipeline(DiffusionPipeline): |
|
""" |
|
Pipeline for text-to-image generation using stable unCLIP. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
prior_tokenizer ([`CLIPTokenizer`]): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
prior_text_encoder ([`CLIPTextModelWithProjection`]): |
|
Frozen text-encoder. |
|
prior ([`PriorTransformer`]): |
|
The canonincal unCLIP prior to approximate the image embedding from the text embedding. |
|
prior_scheduler ([`KarrasDiffusionSchedulers`]): |
|
Scheduler used in the prior denoising process. |
|
image_normalizer ([`StableUnCLIPImageNormalizer`]): |
|
Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image |
|
embeddings after the noise has been applied. |
|
image_noising_scheduler ([`KarrasDiffusionSchedulers`]): |
|
Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined |
|
by `noise_level` in `StableUnCLIPPipeline.__call__`. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`KarrasDiffusionSchedulers`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
""" |
|
|
|
|
|
prior_tokenizer: CLIPTokenizer |
|
prior_text_encoder: CLIPTextModelWithProjection |
|
prior: PriorTransformer |
|
prior_scheduler: KarrasDiffusionSchedulers |
|
|
|
|
|
image_normalizer: StableUnCLIPImageNormalizer |
|
image_noising_scheduler: KarrasDiffusionSchedulers |
|
|
|
|
|
tokenizer: CLIPTokenizer |
|
text_encoder: CLIPTextModel |
|
unet: UNet2DConditionModel |
|
scheduler: KarrasDiffusionSchedulers |
|
|
|
vae: AutoencoderKL |
|
|
|
def __init__( |
|
self, |
|
|
|
prior_tokenizer: CLIPTokenizer, |
|
prior_text_encoder: CLIPTextModelWithProjection, |
|
prior: PriorTransformer, |
|
prior_scheduler: KarrasDiffusionSchedulers, |
|
|
|
image_normalizer: StableUnCLIPImageNormalizer, |
|
image_noising_scheduler: KarrasDiffusionSchedulers, |
|
|
|
tokenizer: CLIPTokenizer, |
|
text_encoder: CLIPTextModelWithProjection, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
|
|
vae: AutoencoderKL, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
prior_tokenizer=prior_tokenizer, |
|
prior_text_encoder=prior_text_encoder, |
|
prior=prior, |
|
prior_scheduler=prior_scheduler, |
|
image_normalizer=image_normalizer, |
|
image_noising_scheduler=image_noising_scheduler, |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
unet=unet, |
|
scheduler=scheduler, |
|
vae=vae, |
|
) |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. |
|
|
|
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several |
|
steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
|
models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
|
when their specific submodule has its `forward` method called. |
|
""" |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
|
|
models = [ |
|
self.prior_text_encoder, |
|
self.text_encoder, |
|
self.unet, |
|
self.vae, |
|
] |
|
for cpu_offloaded_model in models: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
|
|
def _encode_prior_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
|
text_attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if text_model_output is None: |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.prior_tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.prior_tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
|
|
untruncated_ids = self.prior_tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.prior_tokenizer.batch_decode( |
|
untruncated_ids[:, self.prior_tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.prior_tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.prior_tokenizer.model_max_length] |
|
|
|
prior_text_encoder_output = self.prior_text_encoder(text_input_ids.to(device)) |
|
|
|
prompt_embeds = prior_text_encoder_output.text_embeds |
|
prior_text_encoder_hidden_states = prior_text_encoder_output.last_hidden_state |
|
|
|
else: |
|
batch_size = text_model_output[0].shape[0] |
|
prompt_embeds, prior_text_encoder_hidden_states = text_model_output[0], text_model_output[1] |
|
text_mask = text_attention_mask |
|
|
|
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
prior_text_encoder_hidden_states = prior_text_encoder_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] * batch_size |
|
|
|
uncond_input = self.prior_tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.prior_tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
negative_prompt_embeds_prior_text_encoder_output = self.prior_text_encoder( |
|
uncond_input.input_ids.to(device) |
|
) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds_prior_text_encoder_output.text_embeds |
|
uncond_prior_text_encoder_hidden_states = ( |
|
negative_prompt_embeds_prior_text_encoder_output.last_hidden_state |
|
) |
|
|
|
|
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_prior_text_encoder_hidden_states.shape[1] |
|
uncond_prior_text_encoder_hidden_states = uncond_prior_text_encoder_hidden_states.repeat( |
|
1, num_images_per_prompt, 1 |
|
) |
|
uncond_prior_text_encoder_hidden_states = uncond_prior_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prior_text_encoder_hidden_states = torch.cat( |
|
[uncond_prior_text_encoder_hidden_states, prior_text_encoder_hidden_states] |
|
) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return prompt_embeds, prior_text_encoder_hidden_states, text_mask |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def prepare_prior_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.prior_scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.prior_scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
noise_level, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two." |
|
) |
|
|
|
if prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
|
|
if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
"Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined." |
|
) |
|
|
|
if prompt is not None and negative_prompt is not None: |
|
if type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: |
|
raise ValueError( |
|
f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." |
|
) |
|
|
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
def noise_image_embeddings( |
|
self, |
|
image_embeds: torch.Tensor, |
|
noise_level: int, |
|
noise: Optional[torch.FloatTensor] = None, |
|
generator: Optional[torch.Generator] = None, |
|
): |
|
""" |
|
Add noise to the image embeddings. The amount of noise is controlled by a `noise_level` input. A higher |
|
`noise_level` increases the variance in the final un-noised images. |
|
|
|
The noise is applied in two ways |
|
1. A noise schedule is applied directly to the embeddings |
|
2. A vector of sinusoidal time embeddings are appended to the output. |
|
|
|
In both cases, the amount of noise is controlled by the same `noise_level`. |
|
|
|
The embeddings are normalized before the noise is applied and un-normalized after the noise is applied. |
|
""" |
|
if noise is None: |
|
noise = randn_tensor( |
|
image_embeds.shape, generator=generator, device=image_embeds.device, dtype=image_embeds.dtype |
|
) |
|
|
|
noise_level = torch.tensor([noise_level] * image_embeds.shape[0], device=image_embeds.device) |
|
|
|
image_embeds = self.image_normalizer.scale(image_embeds) |
|
|
|
image_embeds = self.image_noising_scheduler.add_noise(image_embeds, timesteps=noise_level, noise=noise) |
|
|
|
image_embeds = self.image_normalizer.unscale(image_embeds) |
|
|
|
noise_level = get_timestep_embedding( |
|
timesteps=noise_level, embedding_dim=image_embeds.shape[-1], flip_sin_to_cos=True, downscale_freq_shift=0 |
|
) |
|
|
|
|
|
|
|
|
|
noise_level = noise_level.to(image_embeds.dtype) |
|
|
|
image_embeds = torch.cat((image_embeds, noise_level), 1) |
|
|
|
return image_embeds |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
|
|
prompt: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 20, |
|
guidance_scale: float = 10.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
noise_level: int = 0, |
|
|
|
prior_num_inference_steps: int = 25, |
|
prior_guidance_scale: float = 4.0, |
|
prior_latents: Optional[torch.FloatTensor] = None, |
|
): |
|
""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 20): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 10.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. |
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
noise_level (`int`, *optional*, defaults to `0`): |
|
The amount of noise to add to the image embeddings. A higher `noise_level` increases the variance in |
|
the final un-noised images. See `StableUnCLIPPipeline.noise_image_embeddings` for details. |
|
prior_num_inference_steps (`int`, *optional*, defaults to 25): |
|
The number of denoising steps in the prior denoising process. More denoising steps usually lead to a |
|
higher quality image at the expense of slower inference. |
|
prior_guidance_scale (`float`, *optional*, defaults to 4.0): |
|
Guidance scale for the prior denoising process as defined in [Classifier-Free Diffusion |
|
Guidance](https://arxiv.org/abs/2207.12598). `prior_guidance_scale` is defined as `w` of equation 2. of |
|
[Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting |
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to |
|
the text `prompt`, usually at the expense of lower image quality. |
|
prior_latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
embedding generation in the prior denoising process. Can be used to tweak the same generation with |
|
different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied |
|
random `generator`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~ pipeline_utils.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
callback_steps=callback_steps, |
|
noise_level=noise_level, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
prior_do_classifier_free_guidance = prior_guidance_scale > 1.0 |
|
|
|
|
|
prior_prompt_embeds, prior_text_encoder_hidden_states, prior_text_mask = self._encode_prior_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=prior_do_classifier_free_guidance, |
|
) |
|
|
|
|
|
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) |
|
prior_timesteps_tensor = self.prior_scheduler.timesteps |
|
|
|
|
|
embedding_dim = self.prior.config.embedding_dim |
|
prior_latents = self.prepare_latents( |
|
(batch_size, embedding_dim), |
|
prior_prompt_embeds.dtype, |
|
device, |
|
generator, |
|
prior_latents, |
|
self.prior_scheduler, |
|
) |
|
|
|
|
|
prior_extra_step_kwargs = self.prepare_prior_extra_step_kwargs(generator, eta) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([prior_latents] * 2) if prior_do_classifier_free_guidance else prior_latents |
|
latent_model_input = self.prior_scheduler.scale_model_input(latent_model_input, t) |
|
|
|
predicted_image_embedding = self.prior( |
|
latent_model_input, |
|
timestep=t, |
|
proj_embedding=prior_prompt_embeds, |
|
encoder_hidden_states=prior_text_encoder_hidden_states, |
|
attention_mask=prior_text_mask, |
|
).predicted_image_embedding |
|
|
|
if prior_do_classifier_free_guidance: |
|
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) |
|
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( |
|
predicted_image_embedding_text - predicted_image_embedding_uncond |
|
) |
|
|
|
prior_latents = self.prior_scheduler.step( |
|
predicted_image_embedding, |
|
timestep=t, |
|
sample=prior_latents, |
|
**prior_extra_step_kwargs, |
|
).prev_sample |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, prior_latents) |
|
|
|
prior_latents = self.prior.post_process_latents(prior_latents) |
|
|
|
image_embeds = prior_latents |
|
|
|
|
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
image_embeds = self.noise_image_embeddings( |
|
image_embeds=image_embeds, |
|
noise_level=noise_level, |
|
generator=generator, |
|
) |
|
|
|
if do_classifier_free_guidance: |
|
negative_prompt_embeds = torch.zeros_like(image_embeds) |
|
|
|
|
|
|
|
|
|
image_embeds = torch.cat([negative_prompt_embeds, image_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.in_channels |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
latents = self.prepare_latents( |
|
shape=shape, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
latents=latents, |
|
scheduler=self.scheduler, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps)): |
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
class_labels=image_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|