|
import inspect |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL |
|
import torch |
|
import torch.utils.checkpoint |
|
|
|
from ...models import UNet2DModel, VQModel |
|
from ...schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from ...utils import PIL_INTERPOLATION, randn_tensor |
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput |
|
|
|
|
|
def preprocess(image): |
|
w, h = image.size |
|
w, h = map(lambda x: x - x % 32, (w, h)) |
|
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
return 2.0 * image - 1.0 |
|
|
|
|
|
class LDMSuperResolutionPipeline(DiffusionPipeline): |
|
r""" |
|
A pipeline for image super-resolution using Latent |
|
|
|
This class inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Parameters: |
|
vqvae ([`VQModel`]): |
|
Vector-quantized (VQ) VAE Model to encode and decode images to and from latent representations. |
|
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerDiscreteScheduler`], |
|
[`EulerAncestralDiscreteScheduler`], [`DPMSolverMultistepScheduler`], or [`PNDMScheduler`]. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vqvae: VQModel, |
|
unet: UNet2DModel, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
): |
|
super().__init__() |
|
self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
image: Union[torch.Tensor, PIL.Image.Image] = None, |
|
batch_size: Optional[int] = 1, |
|
num_inference_steps: Optional[int] = 100, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
) -> Union[Tuple, ImagePipelineOutput]: |
|
r""" |
|
Args: |
|
image (`torch.Tensor` or `PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
batch_size (`int`, *optional*, defaults to 1): |
|
Number of images to generate. |
|
num_inference_steps (`int`, *optional*, defaults to 100): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is |
|
True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
if isinstance(image, PIL.Image.Image): |
|
batch_size = 1 |
|
elif isinstance(image, torch.Tensor): |
|
batch_size = image.shape[0] |
|
else: |
|
raise ValueError(f"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(image)}") |
|
|
|
if isinstance(image, PIL.Image.Image): |
|
image = preprocess(image) |
|
|
|
height, width = image.shape[-2:] |
|
|
|
|
|
latents_shape = (batch_size, self.unet.in_channels // 2, height, width) |
|
latents_dtype = next(self.unet.parameters()).dtype |
|
|
|
latents = randn_tensor(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) |
|
|
|
image = image.to(device=self.device, dtype=latents_dtype) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=self.device) |
|
timesteps_tensor = self.scheduler.timesteps |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_kwargs = {} |
|
if accepts_eta: |
|
extra_kwargs["eta"] = eta |
|
|
|
for t in self.progress_bar(timesteps_tensor): |
|
|
|
latents_input = torch.cat([latents, image], dim=1) |
|
latents_input = self.scheduler.scale_model_input(latents_input, t) |
|
|
|
noise_pred = self.unet(latents_input, t).sample |
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_kwargs).prev_sample |
|
|
|
|
|
image = self.vqvae.decode(latents).sample |
|
image = torch.clamp(image, -1.0, 1.0) |
|
image = image / 2 + 0.5 |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return ImagePipelineOutput(images=image) |
|
|