|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from ..utils import BaseOutput |
|
from .modeling_utils import ModelMixin |
|
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer |
|
|
|
|
|
@dataclass |
|
class VQEncoderOutput(BaseOutput): |
|
""" |
|
Output of VQModel encoding method. |
|
|
|
Args: |
|
latents (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Encoded output sample of the model. Output of the last layer of the model. |
|
""" |
|
|
|
latents: torch.FloatTensor |
|
|
|
|
|
class VQModel(ModelMixin, ConfigMixin): |
|
r"""VQ-VAE model from the paper Neural Discrete Representation Learning by Aaron van den Oord, Oriol Vinyals and Koray |
|
Kavukcuoglu. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to : |
|
obj:`(64,)`): Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): TODO |
|
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE. |
|
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE. |
|
scaling_factor (`float`, *optional*, defaults to `0.18215`): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 3, |
|
sample_size: int = 32, |
|
num_vq_embeddings: int = 256, |
|
norm_num_groups: int = 32, |
|
vq_embed_dim: Optional[int] = None, |
|
scaling_factor: float = 0.18215, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
double_z=False, |
|
) |
|
|
|
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels |
|
|
|
self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1) |
|
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False) |
|
self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1) |
|
|
|
|
|
self.decoder = Decoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
) |
|
|
|
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> VQEncoderOutput: |
|
h = self.encoder(x) |
|
h = self.quant_conv(h) |
|
|
|
if not return_dict: |
|
return (h,) |
|
|
|
return VQEncoderOutput(latents=h) |
|
|
|
def decode( |
|
self, h: torch.FloatTensor, force_not_quantize: bool = False, return_dict: bool = True |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
|
|
if not force_not_quantize: |
|
quant, emb_loss, info = self.quantize(h) |
|
else: |
|
quant = h |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward(self, sample: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
h = self.encode(x).latents |
|
dec = self.decode(h).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|