|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Callable, Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from ..utils.import_utils import is_xformers_available |
|
from .cross_attention import CrossAttention |
|
from .embeddings import CombinedTimestepLabelEmbeddings |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted |
|
to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
Uses three q, k, v linear layers to compute attention. |
|
|
|
Parameters: |
|
channels (`int`): The number of channels in the input and output. |
|
num_head_channels (`int`, *optional*): |
|
The number of channels in each head. If None, then `num_heads` = 1. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm. |
|
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by. |
|
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. |
|
""" |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
num_head_channels: Optional[int] = None, |
|
norm_num_groups: int = 32, |
|
rescale_output_factor: float = 1.0, |
|
eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
|
|
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 |
|
self.num_head_size = num_head_channels |
|
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True) |
|
|
|
|
|
self.query = nn.Linear(channels, channels) |
|
self.key = nn.Linear(channels, channels) |
|
self.value = nn.Linear(channels, channels) |
|
|
|
self.rescale_output_factor = rescale_output_factor |
|
self.proj_attn = nn.Linear(channels, channels, 1) |
|
|
|
self._use_memory_efficient_attention_xformers = False |
|
self._attention_op = None |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.num_heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.num_heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None |
|
): |
|
if use_memory_efficient_attention_xformers: |
|
if not is_xformers_available(): |
|
raise ModuleNotFoundError( |
|
( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers" |
|
), |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is" |
|
" only available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
self._attention_op = attention_op |
|
|
|
def forward(self, hidden_states): |
|
residual = hidden_states |
|
batch, channel, height, width = hidden_states.shape |
|
|
|
|
|
hidden_states = self.group_norm(hidden_states) |
|
|
|
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) |
|
|
|
|
|
query_proj = self.query(hidden_states) |
|
key_proj = self.key(hidden_states) |
|
value_proj = self.value(hidden_states) |
|
|
|
scale = 1 / math.sqrt(self.channels / self.num_heads) |
|
|
|
query_proj = self.reshape_heads_to_batch_dim(query_proj) |
|
key_proj = self.reshape_heads_to_batch_dim(key_proj) |
|
value_proj = self.reshape_heads_to_batch_dim(value_proj) |
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention( |
|
query_proj, key_proj, value_proj, attn_bias=None, op=self._attention_op |
|
) |
|
hidden_states = hidden_states.to(query_proj.dtype) |
|
else: |
|
attention_scores = torch.baddbmm( |
|
torch.empty( |
|
query_proj.shape[0], |
|
query_proj.shape[1], |
|
key_proj.shape[1], |
|
dtype=query_proj.dtype, |
|
device=query_proj.device, |
|
), |
|
query_proj, |
|
key_proj.transpose(-1, -2), |
|
beta=0, |
|
alpha=scale, |
|
) |
|
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) |
|
hidden_states = torch.bmm(attention_probs, value_proj) |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
|
|
|
|
hidden_states = self.proj_attn(hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) |
|
|
|
|
|
hidden_states = (hidden_states + residual) / self.rescale_output_factor |
|
return hidden_states |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
norm_elementwise_affine: bool = True, |
|
norm_type: str = "layer_norm", |
|
final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" |
|
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" |
|
|
|
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: |
|
raise ValueError( |
|
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" |
|
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." |
|
) |
|
|
|
|
|
self.attn1 = CrossAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.attn2 = CrossAttention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if self.use_ada_layer_norm: |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) |
|
elif self.use_ada_layer_norm_zero: |
|
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm) |
|
else: |
|
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
|
if cross_attention_dim is not None: |
|
|
|
|
|
|
|
self.norm2 = ( |
|
AdaLayerNorm(dim, num_embeds_ada_norm) |
|
if self.use_ada_layer_norm |
|
else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
timestep=None, |
|
attention_mask=None, |
|
cross_attention_kwargs=None, |
|
class_labels=None, |
|
): |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = attn_output + hidden_states |
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
|
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
final_dropout: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim) |
|
if activation_fn == "gelu-approximate": |
|
act_fn = GELU(dim, inner_dim, approximate="tanh") |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(nn.Linear(inner_dim, dim_out)) |
|
|
|
if final_dropout: |
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
def forward(self, hidden_states): |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GELU(nn.Module): |
|
r""" |
|
GELU activation function with tanh approximation support with `approximate="tanh"`. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none"): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out) |
|
self.approximate = approximate |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate, approximate=self.approximate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.proj(hidden_states) |
|
hidden_states = self.gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GEGLU(nn.Module): |
|
r""" |
|
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) |
|
return hidden_states * self.gelu(gate) |
|
|
|
|
|
class ApproximateGELU(nn.Module): |
|
""" |
|
The approximate form of Gaussian Error Linear Unit (GELU) |
|
|
|
For more details, see section 2: https://arxiv.org/abs/1606.08415 |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Norm layer modified to incorporate timestep embeddings. |
|
""" |
|
|
|
def __init__(self, embedding_dim, num_embeddings): |
|
super().__init__() |
|
self.emb = nn.Embedding(num_embeddings, embedding_dim) |
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) |
|
|
|
def forward(self, x, timestep): |
|
emb = self.linear(self.silu(self.emb(timestep))) |
|
scale, shift = torch.chunk(emb, 2) |
|
x = self.norm(x) * (1 + scale) + shift |
|
return x |
|
|
|
|
|
class AdaLayerNormZero(nn.Module): |
|
""" |
|
Norm layer adaptive layer norm zero (adaLN-Zero). |
|
""" |
|
|
|
def __init__(self, embedding_dim, num_embeddings): |
|
super().__init__() |
|
|
|
self.emb = CombinedTimestepLabelEmbeddings(num_embeddings, embedding_dim) |
|
|
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) |
|
|
|
def forward(self, x, timestep, class_labels, hidden_dtype=None): |
|
emb = self.linear(self.silu(self.emb(timestep, class_labels, hidden_dtype=hidden_dtype))) |
|
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) |
|
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] |
|
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp |
|
|
|
|
|
class AdaGroupNorm(nn.Module): |
|
""" |
|
GroupNorm layer modified to incorporate timestep embeddings. |
|
""" |
|
|
|
def __init__( |
|
self, embedding_dim: int, out_dim: int, num_groups: int, act_fn: Optional[str] = None, eps: float = 1e-5 |
|
): |
|
super().__init__() |
|
self.num_groups = num_groups |
|
self.eps = eps |
|
self.act = None |
|
if act_fn == "swish": |
|
self.act = lambda x: F.silu(x) |
|
elif act_fn == "mish": |
|
self.act = nn.Mish() |
|
elif act_fn == "silu": |
|
self.act = nn.SiLU() |
|
elif act_fn == "gelu": |
|
self.act = nn.GELU() |
|
|
|
self.linear = nn.Linear(embedding_dim, out_dim * 2) |
|
|
|
def forward(self, x, emb): |
|
if self.act: |
|
emb = self.act(emb) |
|
emb = self.linear(emb) |
|
emb = emb[:, :, None, None] |
|
scale, shift = emb.chunk(2, dim=1) |
|
|
|
x = F.group_norm(x, self.num_groups, eps=self.eps) |
|
x = x * (1 + scale) + shift |
|
return x |
|
|