|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from ..configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from .scheduling_utils import SchedulerMixin, SchedulerOutput | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class IPNDMScheduler(SchedulerMixin, ConfigMixin): | 
					
						
						|  | """ | 
					
						
						|  | Improved Pseudo numerical methods for diffusion models (iPNDM) ported from @crowsonkb's amazing k-diffusion | 
					
						
						|  | [library](https://github.com/crowsonkb/v-diffusion-pytorch/blob/987f8985e38208345c1959b0ea767a625831cc9b/diffusion/sampling.py#L296) | 
					
						
						|  |  | 
					
						
						|  | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | 
					
						
						|  | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | 
					
						
						|  | [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | 
					
						
						|  | [`~SchedulerMixin.from_pretrained`] functions. | 
					
						
						|  |  | 
					
						
						|  | For more details, see the original paper: https://arxiv.org/abs/2202.09778 | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_train_timesteps (`int`): number of diffusion steps used to train the model. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | order = 1 | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  | self.set_timesteps(num_train_timesteps) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.init_noise_sigma = 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.pndm_order = 4 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.ets = [] | 
					
						
						|  |  | 
					
						
						|  | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | 
					
						
						|  | """ | 
					
						
						|  | Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | the number of diffusion steps used when generating samples with a pre-trained model. | 
					
						
						|  | """ | 
					
						
						|  | self.num_inference_steps = num_inference_steps | 
					
						
						|  | steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1] | 
					
						
						|  | steps = torch.cat([steps, torch.tensor([0.0])]) | 
					
						
						|  |  | 
					
						
						|  | if self.config.trained_betas is not None: | 
					
						
						|  | self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32) | 
					
						
						|  | else: | 
					
						
						|  | self.betas = torch.sin(steps * math.pi / 2) ** 2 | 
					
						
						|  |  | 
					
						
						|  | self.alphas = (1.0 - self.betas**2) ** 0.5 | 
					
						
						|  |  | 
					
						
						|  | timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1] | 
					
						
						|  | self.timesteps = timesteps.to(device) | 
					
						
						|  |  | 
					
						
						|  | self.ets = [] | 
					
						
						|  |  | 
					
						
						|  | def step( | 
					
						
						|  | self, | 
					
						
						|  | model_output: torch.FloatTensor, | 
					
						
						|  | timestep: int, | 
					
						
						|  | sample: torch.FloatTensor, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[SchedulerOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple | 
					
						
						|  | times to approximate the solution. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`int`): current discrete timestep in the diffusion chain. | 
					
						
						|  | sample (`torch.FloatTensor`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  | return_dict (`bool`): option for returning tuple rather than SchedulerOutput class | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is | 
					
						
						|  | True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | if self.num_inference_steps is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | timestep_index = (self.timesteps == timestep).nonzero().item() | 
					
						
						|  | prev_timestep_index = timestep_index + 1 | 
					
						
						|  |  | 
					
						
						|  | ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] | 
					
						
						|  | self.ets.append(ets) | 
					
						
						|  |  | 
					
						
						|  | if len(self.ets) == 1: | 
					
						
						|  | ets = self.ets[-1] | 
					
						
						|  | elif len(self.ets) == 2: | 
					
						
						|  | ets = (3 * self.ets[-1] - self.ets[-2]) / 2 | 
					
						
						|  | elif len(self.ets) == 3: | 
					
						
						|  | ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 | 
					
						
						|  | else: | 
					
						
						|  | ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) | 
					
						
						|  |  | 
					
						
						|  | prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (prev_sample,) | 
					
						
						|  |  | 
					
						
						|  | return SchedulerOutput(prev_sample=prev_sample) | 
					
						
						|  |  | 
					
						
						|  | def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | 
					
						
						|  | """ | 
					
						
						|  | Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | 
					
						
						|  | current timestep. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | sample (`torch.FloatTensor`): input sample | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.FloatTensor`: scaled input sample | 
					
						
						|  | """ | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets): | 
					
						
						|  | alpha = self.alphas[timestep_index] | 
					
						
						|  | sigma = self.betas[timestep_index] | 
					
						
						|  |  | 
					
						
						|  | next_alpha = self.alphas[prev_timestep_index] | 
					
						
						|  | next_sigma = self.betas[prev_timestep_index] | 
					
						
						|  |  | 
					
						
						|  | pred = (sample - sigma * ets) / max(alpha, 1e-8) | 
					
						
						|  | prev_sample = next_alpha * pred + ets * next_sigma | 
					
						
						|  |  | 
					
						
						|  | return prev_sample | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self.config.num_train_timesteps | 
					
						
						|  |  |