|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | from ..configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from ..utils import BaseOutput, logging, randn_tensor | 
					
						
						|  | from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  |  | 
					
						
						|  | class EulerDiscreteSchedulerOutput(BaseOutput): | 
					
						
						|  | """ | 
					
						
						|  | Output class for the scheduler's step function output. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | 
					
						
						|  | Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | 
					
						
						|  | denoising loop. | 
					
						
						|  | pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | 
					
						
						|  | The predicted denoised sample (x_{0}) based on the model output from the current timestep. | 
					
						
						|  | `pred_original_sample` can be used to preview progress or for guidance. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | prev_sample: torch.FloatTensor | 
					
						
						|  | pred_original_sample: Optional[torch.FloatTensor] = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): | 
					
						
						|  | """ | 
					
						
						|  | Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | 
					
						
						|  | (1-beta) over time from t = [0,1]. | 
					
						
						|  |  | 
					
						
						|  | Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | 
					
						
						|  | to that part of the diffusion process. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_diffusion_timesteps (`int`): the number of betas to produce. | 
					
						
						|  | max_beta (`float`): the maximum beta to use; use values lower than 1 to | 
					
						
						|  | prevent singularities. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | betas (`np.ndarray`): the betas used by the scheduler to step the model outputs | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def alpha_bar(time_step): | 
					
						
						|  | return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | 
					
						
						|  |  | 
					
						
						|  | betas = [] | 
					
						
						|  | for i in range(num_diffusion_timesteps): | 
					
						
						|  | t1 = i / num_diffusion_timesteps | 
					
						
						|  | t2 = (i + 1) / num_diffusion_timesteps | 
					
						
						|  | betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | 
					
						
						|  | return torch.tensor(betas, dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): | 
					
						
						|  | """ | 
					
						
						|  | Euler scheduler (Algorithm 2) from Karras et al. (2022) https://arxiv.org/abs/2206.00364. . Based on the original | 
					
						
						|  | k-diffusion implementation by Katherine Crowson: | 
					
						
						|  | https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L51 | 
					
						
						|  |  | 
					
						
						|  | [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | 
					
						
						|  | function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | 
					
						
						|  | [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | 
					
						
						|  | [`~SchedulerMixin.from_pretrained`] functions. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_train_timesteps (`int`): number of diffusion steps used to train the model. | 
					
						
						|  | beta_start (`float`): the starting `beta` value of inference. | 
					
						
						|  | beta_end (`float`): the final `beta` value. | 
					
						
						|  | beta_schedule (`str`): | 
					
						
						|  | the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | 
					
						
						|  | `linear` or `scaled_linear`. | 
					
						
						|  | trained_betas (`np.ndarray`, optional): | 
					
						
						|  | option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | 
					
						
						|  | prediction_type (`str`, default `"epsilon"`, optional): | 
					
						
						|  | prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion | 
					
						
						|  | process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 | 
					
						
						|  | https://imagen.research.google/video/paper.pdf) | 
					
						
						|  | interpolation_type (`str`, default `"linear"`, optional): | 
					
						
						|  | interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be one of | 
					
						
						|  | [`"linear"`, `"log_linear"`]. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _compatibles = [e.name for e in KarrasDiffusionSchedulers] | 
					
						
						|  | order = 1 | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_train_timesteps: int = 1000, | 
					
						
						|  | beta_start: float = 0.0001, | 
					
						
						|  | beta_end: float = 0.02, | 
					
						
						|  | beta_schedule: str = "linear", | 
					
						
						|  | trained_betas: Optional[Union[np.ndarray, List[float]]] = None, | 
					
						
						|  | prediction_type: str = "epsilon", | 
					
						
						|  | interpolation_type: str = "linear", | 
					
						
						|  | ): | 
					
						
						|  | if trained_betas is not None: | 
					
						
						|  | self.betas = torch.tensor(trained_betas, dtype=torch.float32) | 
					
						
						|  | elif beta_schedule == "linear": | 
					
						
						|  | self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | 
					
						
						|  | elif beta_schedule == "scaled_linear": | 
					
						
						|  |  | 
					
						
						|  | self.betas = ( | 
					
						
						|  | torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 | 
					
						
						|  | ) | 
					
						
						|  | elif beta_schedule == "squaredcos_cap_v2": | 
					
						
						|  |  | 
					
						
						|  | self.betas = betas_for_alpha_bar(num_train_timesteps) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | 
					
						
						|  |  | 
					
						
						|  | self.alphas = 1.0 - self.betas | 
					
						
						|  | self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) | 
					
						
						|  |  | 
					
						
						|  | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | 
					
						
						|  | sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32) | 
					
						
						|  | self.sigmas = torch.from_numpy(sigmas) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.init_noise_sigma = self.sigmas.max() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.num_inference_steps = None | 
					
						
						|  | timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() | 
					
						
						|  | self.timesteps = torch.from_numpy(timesteps) | 
					
						
						|  | self.is_scale_input_called = False | 
					
						
						|  |  | 
					
						
						|  | def scale_model_input( | 
					
						
						|  | self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  | """ | 
					
						
						|  | Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | sample (`torch.FloatTensor`): input sample | 
					
						
						|  | timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `torch.FloatTensor`: scaled input sample | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(timestep, torch.Tensor): | 
					
						
						|  | timestep = timestep.to(self.timesteps.device) | 
					
						
						|  | step_index = (self.timesteps == timestep).nonzero().item() | 
					
						
						|  | sigma = self.sigmas[step_index] | 
					
						
						|  |  | 
					
						
						|  | sample = sample / ((sigma**2 + 1) ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | self.is_scale_input_called = True | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | 
					
						
						|  | """ | 
					
						
						|  | Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | num_inference_steps (`int`): | 
					
						
						|  | the number of diffusion steps used when generating samples with a pre-trained model. | 
					
						
						|  | device (`str` or `torch.device`, optional): | 
					
						
						|  | the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | 
					
						
						|  | """ | 
					
						
						|  | self.num_inference_steps = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  | timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy() | 
					
						
						|  | sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) | 
					
						
						|  |  | 
					
						
						|  | if self.config.interpolation_type == "linear": | 
					
						
						|  | sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) | 
					
						
						|  | elif self.config.interpolation_type == "log_linear": | 
					
						
						|  | sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp() | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" | 
					
						
						|  | " 'linear' or 'log_linear'" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) | 
					
						
						|  | self.sigmas = torch.from_numpy(sigmas).to(device=device) | 
					
						
						|  | if str(device).startswith("mps"): | 
					
						
						|  |  | 
					
						
						|  | self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) | 
					
						
						|  | else: | 
					
						
						|  | self.timesteps = torch.from_numpy(timesteps).to(device=device) | 
					
						
						|  |  | 
					
						
						|  | def step( | 
					
						
						|  | self, | 
					
						
						|  | model_output: torch.FloatTensor, | 
					
						
						|  | timestep: Union[float, torch.FloatTensor], | 
					
						
						|  | sample: torch.FloatTensor, | 
					
						
						|  | s_churn: float = 0.0, | 
					
						
						|  | s_tmin: float = 0.0, | 
					
						
						|  | s_tmax: float = float("inf"), | 
					
						
						|  | s_noise: float = 1.0, | 
					
						
						|  | generator: Optional[torch.Generator] = None, | 
					
						
						|  | return_dict: bool = True, | 
					
						
						|  | ) -> Union[EulerDiscreteSchedulerOutput, Tuple]: | 
					
						
						|  | """ | 
					
						
						|  | Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion | 
					
						
						|  | process from the learned model outputs (most often the predicted noise). | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | model_output (`torch.FloatTensor`): direct output from learned diffusion model. | 
					
						
						|  | timestep (`float`): current timestep in the diffusion chain. | 
					
						
						|  | sample (`torch.FloatTensor`): | 
					
						
						|  | current instance of sample being created by diffusion process. | 
					
						
						|  | s_churn (`float`) | 
					
						
						|  | s_tmin  (`float`) | 
					
						
						|  | s_tmax  (`float`) | 
					
						
						|  | s_noise (`float`) | 
					
						
						|  | generator (`torch.Generator`, optional): Random number generator. | 
					
						
						|  | return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] or `tuple`: | 
					
						
						|  | [`~schedulers.scheduling_utils.EulerDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a | 
					
						
						|  | `tuple`. When returning a tuple, the first element is the sample tensor. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | isinstance(timestep, int) | 
					
						
						|  | or isinstance(timestep, torch.IntTensor) | 
					
						
						|  | or isinstance(timestep, torch.LongTensor) | 
					
						
						|  | ): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | ( | 
					
						
						|  | "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" | 
					
						
						|  | " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" | 
					
						
						|  | " one of the `scheduler.timesteps` as a timestep." | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not self.is_scale_input_called: | 
					
						
						|  | logger.warning( | 
					
						
						|  | "The `scale_model_input` function should be called before `step` to ensure correct denoising. " | 
					
						
						|  | "See `StableDiffusionPipeline` for a usage example." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(timestep, torch.Tensor): | 
					
						
						|  | timestep = timestep.to(self.timesteps.device) | 
					
						
						|  |  | 
					
						
						|  | step_index = (self.timesteps == timestep).nonzero().item() | 
					
						
						|  | sigma = self.sigmas[step_index] | 
					
						
						|  |  | 
					
						
						|  | gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 | 
					
						
						|  |  | 
					
						
						|  | noise = randn_tensor( | 
					
						
						|  | model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | eps = noise * s_noise | 
					
						
						|  | sigma_hat = sigma * (gamma + 1) | 
					
						
						|  |  | 
					
						
						|  | if gamma > 0: | 
					
						
						|  | sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": | 
					
						
						|  | pred_original_sample = model_output | 
					
						
						|  | elif self.config.prediction_type == "epsilon": | 
					
						
						|  | pred_original_sample = sample - sigma_hat * model_output | 
					
						
						|  | elif self.config.prediction_type == "v_prediction": | 
					
						
						|  |  | 
					
						
						|  | pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | derivative = (sample - pred_original_sample) / sigma_hat | 
					
						
						|  |  | 
					
						
						|  | dt = self.sigmas[step_index + 1] - sigma_hat | 
					
						
						|  |  | 
					
						
						|  | prev_sample = sample + derivative * dt | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (prev_sample,) | 
					
						
						|  |  | 
					
						
						|  | return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) | 
					
						
						|  |  | 
					
						
						|  | def add_noise( | 
					
						
						|  | self, | 
					
						
						|  | original_samples: torch.FloatTensor, | 
					
						
						|  | noise: torch.FloatTensor, | 
					
						
						|  | timesteps: torch.FloatTensor, | 
					
						
						|  | ) -> torch.FloatTensor: | 
					
						
						|  |  | 
					
						
						|  | self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | 
					
						
						|  | if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | 
					
						
						|  |  | 
					
						
						|  | self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | 
					
						
						|  | timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | 
					
						
						|  | else: | 
					
						
						|  | self.timesteps = self.timesteps.to(original_samples.device) | 
					
						
						|  | timesteps = timesteps.to(original_samples.device) | 
					
						
						|  |  | 
					
						
						|  | schedule_timesteps = self.timesteps | 
					
						
						|  | step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | 
					
						
						|  |  | 
					
						
						|  | sigma = self.sigmas[step_indices].flatten() | 
					
						
						|  | while len(sigma.shape) < len(original_samples.shape): | 
					
						
						|  | sigma = sigma.unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | noisy_samples = original_samples + noise * sigma | 
					
						
						|  | return noisy_samples | 
					
						
						|  |  | 
					
						
						|  | def __len__(self): | 
					
						
						|  | return self.config.num_train_timesteps | 
					
						
						|  |  |