|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from typing import Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | import jax | 
					
						
						|  | import jax.numpy as jnp | 
					
						
						|  | from flax import linen as nn | 
					
						
						|  | from flax.core.frozen_dict import FrozenDict | 
					
						
						|  | from transformers import CLIPConfig, FlaxPreTrainedModel | 
					
						
						|  | from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def jax_cosine_distance(emb_1, emb_2, eps=1e-12): | 
					
						
						|  | norm_emb_1 = jnp.divide(emb_1.T, jnp.clip(jnp.linalg.norm(emb_1, axis=1), a_min=eps)).T | 
					
						
						|  | norm_emb_2 = jnp.divide(emb_2.T, jnp.clip(jnp.linalg.norm(emb_2, axis=1), a_min=eps)).T | 
					
						
						|  | return jnp.matmul(norm_emb_1, norm_emb_2.T) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlaxStableDiffusionSafetyCheckerModule(nn.Module): | 
					
						
						|  | config: CLIPConfig | 
					
						
						|  | dtype: jnp.dtype = jnp.float32 | 
					
						
						|  |  | 
					
						
						|  | def setup(self): | 
					
						
						|  | self.vision_model = FlaxCLIPVisionModule(self.config.vision_config) | 
					
						
						|  | self.visual_projection = nn.Dense(self.config.projection_dim, use_bias=False, dtype=self.dtype) | 
					
						
						|  |  | 
					
						
						|  | self.concept_embeds = self.param("concept_embeds", jax.nn.initializers.ones, (17, self.config.projection_dim)) | 
					
						
						|  | self.special_care_embeds = self.param( | 
					
						
						|  | "special_care_embeds", jax.nn.initializers.ones, (3, self.config.projection_dim) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.concept_embeds_weights = self.param("concept_embeds_weights", jax.nn.initializers.ones, (17,)) | 
					
						
						|  | self.special_care_embeds_weights = self.param("special_care_embeds_weights", jax.nn.initializers.ones, (3,)) | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, clip_input): | 
					
						
						|  | pooled_output = self.vision_model(clip_input)[1] | 
					
						
						|  | image_embeds = self.visual_projection(pooled_output) | 
					
						
						|  |  | 
					
						
						|  | special_cos_dist = jax_cosine_distance(image_embeds, self.special_care_embeds) | 
					
						
						|  | cos_dist = jax_cosine_distance(image_embeds, self.concept_embeds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | adjustment = 0.0 | 
					
						
						|  |  | 
					
						
						|  | special_scores = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment | 
					
						
						|  | special_scores = jnp.round(special_scores, 3) | 
					
						
						|  | is_special_care = jnp.any(special_scores > 0, axis=1, keepdims=True) | 
					
						
						|  |  | 
					
						
						|  | special_adjustment = is_special_care * 0.01 | 
					
						
						|  |  | 
					
						
						|  | concept_scores = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment | 
					
						
						|  | concept_scores = jnp.round(concept_scores, 3) | 
					
						
						|  | has_nsfw_concepts = jnp.any(concept_scores > 0, axis=1) | 
					
						
						|  |  | 
					
						
						|  | return has_nsfw_concepts | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class FlaxStableDiffusionSafetyChecker(FlaxPreTrainedModel): | 
					
						
						|  | config_class = CLIPConfig | 
					
						
						|  | main_input_name = "clip_input" | 
					
						
						|  | module_class = FlaxStableDiffusionSafetyCheckerModule | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | config: CLIPConfig, | 
					
						
						|  | input_shape: Optional[Tuple] = None, | 
					
						
						|  | seed: int = 0, | 
					
						
						|  | dtype: jnp.dtype = jnp.float32, | 
					
						
						|  | _do_init: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if input_shape is None: | 
					
						
						|  | input_shape = (1, 224, 224, 3) | 
					
						
						|  | module = self.module_class(config=config, dtype=dtype, **kwargs) | 
					
						
						|  | super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) | 
					
						
						|  |  | 
					
						
						|  | def init_weights(self, rng: jax.random.KeyArray, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: | 
					
						
						|  |  | 
					
						
						|  | clip_input = jax.random.normal(rng, input_shape) | 
					
						
						|  |  | 
					
						
						|  | params_rng, dropout_rng = jax.random.split(rng) | 
					
						
						|  | rngs = {"params": params_rng, "dropout": dropout_rng} | 
					
						
						|  |  | 
					
						
						|  | random_params = self.module.init(rngs, clip_input)["params"] | 
					
						
						|  |  | 
					
						
						|  | return random_params | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | clip_input, | 
					
						
						|  | params: dict = None, | 
					
						
						|  | ): | 
					
						
						|  | clip_input = jnp.transpose(clip_input, (0, 2, 3, 1)) | 
					
						
						|  |  | 
					
						
						|  | return self.module.apply( | 
					
						
						|  | {"params": params or self.params}, | 
					
						
						|  | jnp.array(clip_input, dtype=jnp.float32), | 
					
						
						|  | rngs={}, | 
					
						
						|  | ) | 
					
						
						|  |  |